data_16074 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Solution structure of micelle-bound kalata B2 ; _BMRB_accession_number 16074 _BMRB_flat_file_name bmr16074.str _Entry_type original _Submission_date 2008-12-21 _Accession_date 2008-12-21 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Wang Conan K. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 141 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2010-05-27 update BMRB 'edit entity/assembly name' 2009-09-04 original author 'original release' stop_ save_ ############################# # Citation for this entry # ############################# save_citations _Saveframe_category entry_citation _Citation_full . _Citation_title 'Despite a conserved cystine knot motif, different cyclotides have different membrane binding modes' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 19720036 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Wang Conan K. . 2 Colgrave Michelle L. . 3 Ireland David C. . 4 Kaas Quentin . . 5 Craik David J. . stop_ _Journal_abbreviation 'Biophys. J.' _Journal_volume 97 _Journal_issue 5 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 1471 _Page_last 1481 _Year 2009 _Details . save_ ################################## # Molecular system description # ################################## save_assembly _Saveframe_category molecular_system _Mol_system_name 'kalata B2' _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label 'kalata B2' $entity stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state ? _System_paramagnetic no _System_thiol_state . _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_entity _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'kalata B2' _Molecular_mass . _Mol_thiol_state 'all disulfide bound' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 29 _Mol_residue_sequence ; CGETCFGGTCNTPGCSCTWP ICTRDGLPV ; loop_ _Residue_seq_code _Residue_label 1 CYS 2 GLY 3 GLU 4 THR 5 CYS 6 PHE 7 GLY 8 GLY 9 THR 10 CYS 11 ASN 12 THR 13 PRO 14 GLY 15 CYS 16 SER 17 CYS 18 THR 19 TRP 20 PRO 21 ILE 22 CYS 23 THR 24 ARG 25 ASP 26 GLY 27 LEU 28 PRO 29 VAL stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2014-11-10 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value PDB 1PT4 "Solution Structure Of The Moebius Cyclotide Kalata B2" 100.00 29 100.00 100.00 1.25e-10 PDB 2KCH "Solution Structure Of Micelle-Bound Kalata B2" 100.00 29 100.00 100.00 1.25e-10 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $entity 'Viola odorata' 97441 Eukaryota Viridiplantae Viola odorata stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $entity 'purified from the natural source' . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $entity 2 mM 'natural abundance' H2O 90 % 'natural abundance' D2O 10 % 'natural abundance' stop_ save_ ############################ # Computer software used # ############################ save_CNS _Saveframe_category software _Name CNS _Version . loop_ _Vendor _Address _Electronic_address 'Brunger A. T. et.al.' . . stop_ loop_ _Task refinement stop_ _Details . save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model AMX _Field_strength 600 _Details . save_ ############################# # NMR applied experiments # ############################# save_2D_1H-1H_NOESY_1 _Saveframe_category NMR_applied_experiment _Experiment_name '2D 1H-1H NOESY' _Sample_label $sample_1 save_ ####################### # Sample conditions # ####################### save_sample_conditions_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 5 . pH pressure 1 . atm temperature 313 . K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference_1 _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio water H 1 protons ppm 4.65 internal direct . . . 1 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_assigned_chem_shift_list_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Experiment_label '2D 1H-1H NOESY' stop_ loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_conditions_1 _Chem_shift_reference_set_label $chemical_shift_reference_1 _Mol_system_component_name 'kalata B2' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 1 1 CYS H H 7.696 0.000 . 2 1 1 CYS HA H 4.494 0.000 . 3 1 1 CYS HB2 H 3.416 0.000 . 4 1 1 CYS HB3 H 3.116 0.000 . 5 2 2 GLY H H 8.645 0.000 . 6 2 2 GLY HA2 H 3.887 0.000 . 7 2 2 GLY HA3 H 3.764 0.000 . 8 3 3 GLU H H 7.071 0.000 . 9 3 3 GLU HA H 4.867 0.000 . 10 3 3 GLU HB2 H 2.675 0.000 . 11 3 3 GLU HB3 H 2.342 0.000 . 12 3 3 GLU HG2 H 1.943 0.000 . 13 3 3 GLU HG3 H 1.873 0.000 . 14 4 4 THR H H 8.448 0.000 . 15 4 4 THR HA H 4.451 0.000 . 16 4 4 THR HG2 H 1.166 0.000 . 17 5 5 CYS H H 8.289 0.000 . 18 5 5 CYS HA H 5.162 0.000 . 19 5 5 CYS HB2 H 3.368 0.000 . 20 5 5 CYS HB3 H 2.614 0.000 . 21 6 6 PHE H H 9.659 0.000 . 22 6 6 PHE HA H 4.022 0.000 . 23 6 6 PHE HB2 H 3.212 0.000 . 24 6 6 PHE HB3 H 3.212 0.000 . 25 6 6 PHE HD1 H 7.494 0.000 . 26 6 6 PHE HE1 H 7.119 0.000 . 27 6 6 PHE HE2 H 7.119 0.000 . 28 7 7 GLY H H 9.220 0.000 . 29 7 7 GLY HA2 H 4.462 0.000 . 30 7 7 GLY HA3 H 3.881 0.000 . 31 8 8 GLY H H 8.215 0.000 . 32 8 8 GLY HA2 H 4.577 0.000 . 33 8 8 GLY HA3 H 4.139 0.000 . 34 9 9 THR H H 8.012 0.000 . 35 9 9 THR HA H 4.740 0.000 . 36 9 9 THR HB H 4.043 0.000 . 37 9 9 THR HG2 H 1.173 0.000 . 38 10 10 CYS H H 8.576 0.000 . 39 10 10 CYS HA H 4.685 0.000 . 40 10 10 CYS HB2 H 3.120 0.000 . 41 10 10 CYS HB3 H 2.714 0.000 . 42 11 11 ASN H H 11.445 0.000 . 43 11 11 ASN HA H 4.827 0.000 . 44 11 11 ASN HB2 H 2.851 0.000 . 45 11 11 ASN HB3 H 2.851 0.000 . 46 11 11 ASN HD21 H 7.690 0.000 . 47 11 11 ASN HD22 H 6.899 0.000 . 48 12 12 THR H H 9.679 0.000 . 49 12 12 THR HA H 4.369 0.000 . 50 12 12 THR HG2 H 1.377 0.000 . 51 13 13 PRO HA H 4.308 0.000 . 52 13 13 PRO HB2 H 2.372 0.000 . 53 13 13 PRO HB3 H 2.199 0.000 . 54 13 13 PRO HD2 H 3.759 0.000 . 55 13 13 PRO HD3 H 3.759 0.000 . 56 13 13 PRO HG2 H 2.055 0.000 . 57 13 13 PRO HG3 H 1.957 0.000 . 58 14 14 GLY H H 8.748 0.000 . 59 14 14 GLY HA2 H 4.229 0.000 . 60 14 14 GLY HA3 H 3.747 0.000 . 61 15 15 CYS H H 7.712 0.000 . 62 15 15 CYS HA H 5.331 0.000 . 63 15 15 CYS HB2 H 3.892 0.000 . 64 15 15 CYS HB3 H 2.685 0.000 . 65 16 16 SER H H 9.548 0.000 . 66 16 16 SER HA H 4.720 0.000 . 67 16 16 SER HB2 H 3.821 0.000 . 68 16 16 SER HB3 H 3.743 0.000 . 69 17 17 CYS H H 9.028 0.000 . 70 17 17 CYS HA H 4.684 0.000 . 71 17 17 CYS HB2 H 3.113 0.000 . 72 17 17 CYS HB3 H 2.783 0.000 . 73 18 18 THR H H 8.737 0.000 . 74 18 18 THR HA H 4.498 0.000 . 75 18 18 THR HB H 4.251 0.000 . 76 18 18 THR HG2 H 1.227 0.000 . 77 19 19 TRP H H 7.677 0.000 . 78 19 19 TRP HA H 4.007 0.000 . 79 19 19 TRP HB2 H 3.264 0.000 . 80 19 19 TRP HB3 H 3.264 0.000 . 81 19 19 TRP HD1 H 7.417 0.000 . 82 19 19 TRP HE1 H 10.782 0.000 . 83 19 19 TRP HE3 H 7.492 0.000 . 84 19 19 TRP HH2 H 7.118 0.000 . 85 19 19 TRP HZ2 H 7.653 0.000 . 86 19 19 TRP HZ3 H 7.013 0.000 . 87 20 20 PRO HA H 3.323 0.000 . 88 20 20 PRO HB2 H 0.464 0.000 . 89 20 20 PRO HB3 H -1.074 0.000 . 90 20 20 PRO HD2 H 2.951 0.000 . 91 20 20 PRO HD3 H 3.271 0.000 . 92 20 20 PRO HG2 H 0.820 0.000 . 93 20 20 PRO HG3 H 0.907 0.000 . 94 21 21 ILE H H 8.646 0.000 . 95 21 21 ILE HA H 4.249 0.000 . 96 21 21 ILE HB H 1.727 0.000 . 97 21 21 ILE HD1 H 0.848 0.000 . 98 21 21 ILE HG12 H 1.325 0.000 . 99 21 21 ILE HG13 H 1.131 0.000 . 100 21 21 ILE HG2 H 0.711 0.000 . 101 22 22 CYS H H 7.444 0.000 . 102 22 22 CYS HA H 5.082 0.000 . 103 22 22 CYS HB2 H 3.258 0.000 . 104 22 22 CYS HB3 H 2.790 0.000 . 105 23 23 THR H H 9.953 0.000 . 106 23 23 THR HA H 5.065 0.000 . 107 23 23 THR HB H 3.773 0.000 . 108 23 23 THR HG2 H 0.891 0.000 . 109 24 24 ARG H H 8.743 0.000 . 110 24 24 ARG HA H 4.793 0.000 . 111 24 24 ARG HB2 H 1.735 0.000 . 112 24 24 ARG HB3 H 1.688 0.000 . 113 24 24 ARG HD2 H 3.215 0.000 . 114 24 24 ARG HD3 H 3.215 0.000 . 115 24 24 ARG HE H 7.011 0.000 . 116 24 24 ARG HG2 H 1.488 0.000 . 117 24 24 ARG HG3 H 1.488 0.000 . 118 25 25 ASP H H 9.403 0.000 . 119 25 25 ASP HA H 4.376 0.000 . 120 25 25 ASP HB2 H 3.059 0.000 . 121 25 25 ASP HB3 H 2.805 0.000 . 122 26 26 GLY H H 8.543 0.000 . 123 26 26 GLY HA2 H 4.212 0.000 . 124 26 26 GLY HA3 H 3.616 0.000 . 125 27 27 LEU H H 7.799 0.000 . 126 27 27 LEU HA H 5.103 0.000 . 127 27 27 LEU HB2 H 2.067 0.000 . 128 27 27 LEU HB3 H 1.799 0.000 . 129 27 27 LEU HD1 H 1.055 0.000 . 130 27 27 LEU HD2 H 0.983 0.000 . 131 27 27 LEU HG H 1.395 0.000 . 132 28 28 PRO HA H 5.096 0.000 . 133 28 28 PRO HD2 H 3.821 0.000 . 134 28 28 PRO HD3 H 3.711 0.000 . 135 28 28 PRO HG2 H 2.553 0.000 . 136 28 28 PRO HG3 H 2.553 0.000 . 137 29 29 VAL H H 8.014 0.000 . 138 29 29 VAL HA H 4.663 0.000 . 139 29 29 VAL HB H 2.639 0.000 . 140 29 29 VAL HG1 H 0.916 0.000 . 141 29 29 VAL HG2 H 0.916 0.000 . stop_ save_