data_4209 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; Solution NMR structures of the major coat protein of filamentous bacteriophage M13 solubilized in Dodecyl Phosphocholine micelles, 25 lowest energy structures ; _BMRB_accession_number 4209 _BMRB_flat_file_name bmr4209.str _Entry_type original _Submission_date 1998-04-17 _Accession_date 1998-04-17 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Papavoine C. H.M. . 2 Christiaans B. E.C. . 3 Folmer R. H.A. . 4 Konings R. N.H. . 5 Hilbers C. W. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 coupling_constants 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 249 "13C chemical shifts" 157 "15N chemical shifts" 50 "coupling constants" 29 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2000-02-03 original author . stop_ save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; Solution structure of the M13 major coat protein in detergent micelles: A basis for a model of phage assembly involving specific residues ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code 98407983 _PubMed_ID ? loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Papavoine C. H.M. . 2 Christiaans B. E.C. . 3 Folmer R. H.A. . 4 Konings R. N.H. . 5 Hilbers C. W. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of Molecular Biology' _Journal_volume 282 _Journal_issue . _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 401 _Page_last 419 _Year 1998 _Details . loop_ _Keyword 'major coat protein' 'bacteriophage M13' assembly micelle membrane stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Biochemistry 1994 Nov 8;33(44):12990-7 Location of M13 coat protein in sodium dodecyl sulfate micelles as determined by NMR. Papavoine CH, Konings RN, Hilbers CW, van de Ven FJ ; _Citation_title 'Location of M13 coat protein in sodium dodecyl sulfate micelles as determined by NMR.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7947703 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Papavoine 'C H' H. . 2 Konings 'R N' N. . 3 Hilbers 'C W' W. . 4 'van de Ven' 'F J' J. . stop_ _Journal_abbreviation Biochemistry _Journal_name_full Biochemistry _Journal_volume 33 _Journal_issue 44 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 12990 _Page_last 12997 _Year 1994 _Details ; The major coat protein (gVIIIp) of bacteriophage M13 solubilized in sodium dodecyl sulfate (SDS) detergent micelles was used as a model system to study this protein in the lipid-bound form. In order to probe the position of gVIIIp relative to the SDS micelles, stearate was added, spin-labeled at the 5- or 16-position with a doxyl group containing a stable nitroxide radical. The average position of the spin-labels in the micelles was derived from the line broadening of the resonances in the 13C spectrum of SDS. Subsequently, we derived a model of the relative position of gVIIIp in the SDS micelle from the effect of the spin-labels on the gVIIIp resonances, monitored via 1H-15N HSQC and TOCSY experiments. The results are consistent with the structure of gVIIIp having two helical strands. One strand is a long hydrophobic helix that spans the micelle, and the other is a shorter amphipathic helix on the surface of the micelle. These results are in good agreement with the structure of gVIIIp in membranes proposed by McDonnell et al. on the basis of solid state NMR data [McDonnell, P. A., Shon, K., Kim, Y., & Opella, S. J. (1993) J. Mol. Biol. 233, 447-463]. This study indicates that high-resolution NMR on this membrane protein, solubilized in detergent micelles, is a very suitable technique for mimicking these proteins in their natural environment. Furthermore, the data indicate that the structure of the micelle near the C-terminus of the major coat protein is distorted.(ABSTRACT TRUNCATED AT 250 WORDS) ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Eur J Biochem 1995 Sep 1;232(2):490-500 NMR studies of the major coat protein of bacteriophage M13. Structural information of gVIIIp in dodecylphosphocholine micelles. Papavoine CH, Aelen JM, Konings RN, Hilbers CW, Van de Ven FJ ; _Citation_title 'NMR studies of the major coat protein of bacteriophage M13. Structural information of gVIIIp in dodecylphosphocholine micelles.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7556198 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Papavoine 'C H' H. . 2 Aelen 'J M' M. . 3 Konings 'R N' N. . 4 Hilbers 'C W' W. . 5 'Van de Ven' 'F J' J. . stop_ _Journal_abbreviation 'Eur. J. Biochem.' _Journal_name_full 'European journal of biochemistry / FEBS' _Journal_volume 232 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 490 _Page_last 500 _Year 1995 _Details ; The membrane-bound form of the major coat protein (gVIIIp) of bacteriophage M13 has been studied using nuclear magnetic resonance spectroscopy. As membrane mimetics, we used dodecylphosphocholine (DodPCho) detergent micelles to solubilize the protein. We were able to nearly completely assign all resonances of the protein solubilized in DodPCho micelles by using both homonuclear and heteronuclear multidimensional experiments. Based on the patterns of the nuclear Overhauser enhancements and the chemical shifts of the resonances, we deduced the secondary structure of the protein. Additional structural information was obtained from amide proton exchange data and J-coupling constants. The protein consists of two alpha-helices which are connected by a hinge region around residue 21. From spin-label experiments, the location of the protein relative to the DodPCho micelles was determined. One, hydrophobic, helix spans the micelle, and another, amphipathic, helix, is located beneath the surface of the micelle. Comparison of the data of gVIIIp in DodPCho micelles with those of gVIIIp in sodium dodecyl sulfate (SDS) micelles [Van de Ven, F. J. M., van Os, J. W. M., Aelen, J. M. A., Wymenga, S. S., Remerowski, M. L., Konings, R. N. H. & Hilbers, C. W. (1993) Biochemistry 32, 8322-8328; Papavoine, C. H. M., Konings, R. N. H., Hilbers, C. W. & Van de Ven, F. J. M. (1994) Biochemistry 33, 12,990-12,997] reveals that the structures of the protein in the two detergent micelles are very similar. They differ only in the arrangement of the detergent molecules around the protein. For gVIIIp in SDS micelles, we found a micellar structure which is distorted near the C-terminus of the protein; whereas for DodPCho micelles, both distorted and regular elliptical micelles occur. This distortion is probably due to the interaction of the positively charged lysine side chains with the negatively charged head group of the detergent molecules. ; save_ save_ref_3 _Saveframe_category citation _Citation_full ; Biochemistry 1997 Apr 1;36(13):4015-26 Backbone dynamics of the major coat protein of bacteriophage M13 in detergent micelles by 15N nuclear magnetic resonance relaxation measurements using the model-free approach and reduced spectral density mapping. Papavoine CH, Remerowski ML, Horstink LM, Konings RN, Hilbers CW, van de Ven FJ ; _Citation_title 'Backbone dynamics of the major coat protein of bacteriophage M13 in detergent micelles by 15N nuclear magnetic resonance relaxation measurements using the model-free approach and reduced spectral density mapping.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 9092832 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Papavoine 'C H' H. . 2 Remerowski 'M L' L. . 3 Horstink 'L M' M. . 4 Konings 'R N' N. . 5 Hilbers 'C W' W. . 6 'van de Ven' 'F J' J. . stop_ _Journal_abbreviation Biochemistry _Journal_name_full Biochemistry _Journal_volume 36 _Journal_issue 13 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 4015 _Page_last 4026 _Year 1997 _Details ; The backbone dynamics of the major coat protein (gVIIIp) of the filamentous bacteriophage M13, solubilized in detergent micelles, have been studied using 15N nuclear magnetic resonance spectroscopy at three frequencies. Motional parameters and overall and internal correlation times were derived with the model-free approach. It was also checked whether these parameters had to be modified due to anisotropic motion of the protein/micelle complex. Reduced spectral density mapping was used to calculate the spectral densities at J(O), J(omegaN), and [J(omegaH)]. The spectral densities were interpreted by mapping a linear or scaled linear combination of two Lorentzians onto a J(O)-J(omega) plot. The major coat protein of bacteriophage M13 consists of two alpha-helices, one of which is hydrophobic and located within the micelle, while the other is amphipathic and located on the surface of the micelle. Our results indicate that the motion of the hydrophobic helix is restricted such that it corresponds to the overall tumbling of the protein/micelle complex. The interpretation of the relaxation data of the amphipathic helix by means of the model-free approach and the reduced spectral density mapping indicate that in addition to the overall motion all residues in this helix are subject to motion on the fast nanosecond and picosecond time scales. The motions of the vectors in the low nanosecond range are characterized by similar values of the spectral densities and correlation times and represent the motion of the amphipathic helix on and away from the surface of the micelle. The relaxation data of the residues in the hinge region connecting the helices show that there is an abrupt change from highly restricted to less restricted motion. Both the C-terminal and N-terminal residues are very mobile. ; save_ save_ref_4 _Saveframe_category citation _Citation_full ; Biochemistry 1993 Aug 17;32(32):8322-8 Assignment of 1H, 15N, and backbone 13C resonances in detergent-solubilized M13 coat protein via multinuclear multidimensional NMR: a model for the coat protein monomer. van de Ven FJ, van Os JW, Aelen JM, Wymenga SS, Remerowski ML, Konings RN, Hilbers CW ; _Citation_title 'Assignment of 1H, 15N, and backbone 13C resonances in detergent-solubilized M13 coat protein via multinuclear multidimensional NMR: a model for the coat protein monomer.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8347628 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 'van de Ven' 'F J' J. . 2 'van Os' 'J W' W. . 3 Aelen 'J M' M. . 4 Wymenga 'S S' S. . 5 Remerowski 'M L' L. . 6 Konings 'R N' N. . 7 Hilbers 'C W' W. . stop_ _Journal_abbreviation Biochemistry _Journal_name_full Biochemistry _Journal_volume 32 _Journal_issue 32 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 8322 _Page_last 8328 _Year 1993 _Details ; The major coat protein (gVIIIp) of bacteriophage M13 complexed with SDS detergent micelles was used as a model system to study the lipid-bound conformation of the protein. Conditions were found that allowed the recording of good quality of NMR spectra. By making extensive use of three-dimensional heteronuclear (13C, 15N) NMR, we obtained a complete set of resonance assignments for 1HN, 1H alpha, 1H beta, 13C alpha, CO, and 15N and partially assigned the rest of the 1H spectrum. Analysis of NOE and chemical shift data reveals that gVIIIp is composed of two alpha-helical domains, one ranging from Pro-6 to Glu20 and the other ranging from Tyr-24 all the way to the C-terminus Ser-50. In contrast to the results reported by Henry and Sykes [Henry, G.D., & Sykes, B.D. (1992) Biochemistry 31, 5285-5297], at a high SDS to protein ratio the protein appears to be monomeric. ; save_ save_ref_5 _Saveframe_category citation _Citation_full ; J Mol Biol 1993 Oct 5;233(3):447-63 fd coat protein structure in membrane environments. McDonnell PA, Shon K, Kim Y, Opella SJ ; _Citation_title 'fd coat protein structure in membrane environments.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 8411155 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 McDonnell 'P A' A. . 2 Shon K . . 3 Kim Y . . 4 Opella 'S J' J. . stop_ _Journal_abbreviation 'J. Mol. Biol.' _Journal_name_full 'Journal of molecular biology' _Journal_volume 233 _Journal_issue 3 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 447 _Page_last 463 _Year 1993 _Details ; The membrane bound form of bacteriophage fd coat protein has a long hydrophobic membrane spanning helix and a shorter amphipathic helix in the plane of the bilayer. Residues near the N and C termini and in the turn connecting the two helices are mobile. The locations and orientations of the helical secondary structure elements and the protein backbone dynamics were characterized by combining results from multidimensional solution NMR experiments on protein samples in micelles and high resolution solid-state NMR experiments on protein samples in oriented and unoriented lipid bilayers. The coat protein is a monomer in micelles. The secondary structure of the membrane bound form of fd coat protein is very similar to that of the structural form found in the virus particles, since it is nearly all alpha helix. However, the membrane bound form of the protein differs from the structural form of the protein in virus particles in the arrangement of the secondary structure, since the membrane bound form of the protein has two distinct helical domains oriented perpendicular to each other and the structural form of the protein in the virus particles has a nearly continuous helix aligned approximately along the filament axis. In addition, there are substantial differences in the dynamics of residues in the bend between the two helices and near the C terminus, since they are mobile in the membrane bound form of the protein and not in the virus particles. Residues 1 to 5 at the N terminus are highly mobile and unstructured in both the membrane bound and structural forms of the coat protein. ; save_ ################################## # Molecular system description # ################################## save_gVIIIp_g8p_gene_VIII_protein _Saveframe_category molecular_system _Mol_system_name 'M13 major coat protein' _Abbreviation_common 'gVIIIp, g8p, gene VIII protein' _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label gVIIIp $gVIIIp stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'not present' _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_gVIIIp _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'M13 major coat protein' _Abbreviation_common 'gVIIIp, g8p' _Molecular_mass . _Mol_thiol_state 'not present' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 50 _Mol_residue_sequence ; AEGDDPAKAAFNSLQASATE YIGYAWAMVVVIVGATIGIK LFKKFTSKAS ; loop_ _Residue_seq_code _Residue_label 1 ALA 2 GLU 3 GLY 4 ASP 5 ASP 6 PRO 7 ALA 8 LYS 9 ALA 10 ALA 11 PHE 12 ASN 13 SER 14 LEU 15 GLN 16 ALA 17 SER 18 ALA 19 THR 20 GLU 21 TYR 22 ILE 23 GLY 24 TYR 25 ALA 26 TRP 27 ALA 28 MET 29 VAL 30 VAL 31 VAL 32 ILE 33 VAL 34 GLY 35 ALA 36 THR 37 ILE 38 GLY 39 ILE 40 LYS 41 LEU 42 PHE 43 LYS 44 LYS 45 PHE 46 THR 47 SER 48 LYS 49 ALA 50 SER stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2015-02-04 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value BMRB 17728 fd 100.00 50 98.00 100.00 5.55e-25 BMRB 19734 fd_bacteriophage 100.00 50 98.00 100.00 5.55e-25 BMRB 19747 M13_bacteriophage 100.00 50 100.00 100.00 9.49e-26 BMRB 2590 "viral coat protein" 100.00 50 100.00 100.00 9.49e-26 BMRB 2591 "viral coat protein" 100.00 50 98.00 98.00 3.37e-25 BMRB 2592 "viral coat protein" 100.00 50 98.00 100.00 1.56e-25 BMRB 4197 "M13 major coat protein" 100.00 50 100.00 100.00 9.49e-26 PDB 1FDM "Fd Major Coat Protein In Sds Micelles, Nmr, 20 Structures" 100.00 50 98.00 100.00 5.55e-25 PDB 1IFD "Model-Building Studies Of Inovirus: Genetic Variations On A Geometric Theme" 100.00 50 98.00 100.00 5.55e-25 PDB 1IFI "Molecular Models And Structural Comparisons Of Native And Mutant Class I Filamentous Bacteriophages Ff (Fd, F1, M13), If1 And I" 100.00 50 98.00 100.00 5.55e-25 PDB 1IFJ "Molecular Models And Structural Comparisons Of Native And Mutant Class I Filamentous Bacteriophages Ff (Fd, F1, M13), If1 And I" 100.00 50 98.00 100.00 5.55e-25 PDB 1MZT "Nmr Structure Of The Fd Bacteriophage Pviii Coat Protein In Lipid Bilayer Membranes" 100.00 50 98.00 100.00 5.55e-25 PDB 2CPB "Solution Nmr Structures Of The Major Coat Protein Of Filamentous Bacteriophage M13 Solubilized In Dodecylphosphocholine Micelle" 100.00 50 100.00 100.00 9.49e-26 PDB 2CPS "Solution Nmr Structures Of The Major Coat Protein Of Filamentous Bacteriophage M13 Solubilized In Sodium Dodecyl Sulphate Micel" 100.00 50 100.00 100.00 9.49e-26 PDB 2HI5 "Model For Bacteriophage Fd From Cryo-Em" 100.00 50 98.00 100.00 5.55e-25 PDB 2MJZ "Capsid Model Of M13 Bacteriophage Virus From Magic-angle Spinning Nmr And Rosetta Modeling" 100.00 50 100.00 100.00 9.49e-26 EMBL CAA23861 "structural protein [Enterobacteria phage M13]" 100.00 73 100.00 100.00 4.61e-26 EMBL CAA23871 "unnamed protein product [Enterobacteria phage f1]" 100.00 73 98.00 100.00 2.75e-25 GB AAA32207 "gene VIII protein, partial [Enterobacteria phage f1]" 84.00 65 97.62 100.00 9.77e-20 GB AAA32214 "protein VIII [Enterobacteria phage f1]" 100.00 73 98.00 100.00 2.75e-25 GB AAA32220 "major coat protein B [Enterobacteria phage f1]" 100.00 73 98.00 100.00 2.75e-25 GB AAA32308 "VIII [Enterobacteria phage fd]" 100.00 73 98.00 100.00 2.75e-25 GB AAB24445 "gene-8 protein, g8p=major coat protein [bacteriophage fd, Peptide, 50 aa]" 100.00 50 98.00 100.00 5.55e-25 PRF 0812197K DNA,phage 100.00 73 98.00 100.00 2.75e-25 REF NP_510890 "structural protein [Enterobacteria phage M13]" 100.00 73 100.00 100.00 4.61e-26 REF YP_009111292 "protein VIII [Enterobacteria phage f1]" 100.00 73 98.00 100.00 2.75e-25 REF YP_009111302 "VIII [Enterobacteria phage fd]" 100.00 73 98.00 100.00 2.75e-25 SP P69539 "RecName: Full=Capsid protein G8P; AltName: Full=Coat protein B; AltName: Full=Gene 8 protein; Short=G8P; AltName: Full=Major co" 100.00 73 98.00 100.00 2.75e-25 SP P69540 "RecName: Full=Capsid protein G8P; AltName: Full=Coat protein B; AltName: Full=Gene 8 protein; Short=G8P; AltName: Full=Major co" 100.00 73 98.00 100.00 2.75e-25 SP P69541 "RecName: Full=Capsid protein G8P; AltName: Full=Coat protein B; AltName: Full=Gene 8 protein; Short=G8P; AltName: Full=M13 proc" 100.00 73 100.00 100.00 4.61e-26 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $gVIIIp 'bacteriophage M13' 10870 viruses . Inoviridae 'Coliphage M13' stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $gVIIIp 'purified from the natural source' . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_sample_1 _Saveframe_category sample _Sample_type micelles _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Concentration_min_value _Concentration_max_value _Isotopic_labeling $gVIIIp . mM 1.5 2 '[U-100% 13C; U-100% 15N]' 'dodecyl phosphocholine' . mM . . . stop_ save_ ############################ # Computer software used # ############################ save_MNMR _Saveframe_category software _Name MNMR _Version . loop_ _Task 'FT of the recorded spectra' stop_ _Details . save_ save_XEASY _Saveframe_category software _Name XEASY _Version 3.9.1 loop_ _Task ; Analysis of the spectra to obtain assignments and structural information ; stop_ _Details . save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer_1 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model AM _Field_strength 400 _Details . save_ save_NMR_spectrometer_2 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model AM _Field_strength 500 _Details . save_ save_NMR_spectrometer_3 _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model Unity+ _Field_strength 500 _Details . save_ save_NMR_spectrometer_4 _Saveframe_category NMR_spectrometer _Manufacturer Bruker _Model AMX _Field_strength 600 _Details . save_ ############################# # NMR applied experiments # ############################# save_DQF-COSY_1 _Saveframe_category NMR_applied_experiment _Experiment_name DQF-COSY _Sample_label . save_ save_TOCSY_2 _Saveframe_category NMR_applied_experiment _Experiment_name TOCSY _Sample_label . save_ save_NOESY_3 _Saveframe_category NMR_applied_experiment _Experiment_name NOESY _Sample_label . save_ save_NOESY-HMQC_(15N_and_13C)_4 _Saveframe_category NMR_applied_experiment _Experiment_name 'NOESY-HMQC (15N and 13C)' _Sample_label . save_ save_TOCSY-HMQC_(15N)_5 _Saveframe_category NMR_applied_experiment _Experiment_name 'TOCSY-HMQC (15N)' _Sample_label . save_ save_HCCH-TOCSY_6 _Saveframe_category NMR_applied_experiment _Experiment_name HCCH-TOCSY _Sample_label . save_ save_ROESY-GHSQC_7 _Saveframe_category NMR_applied_experiment _Experiment_name ROESY-GHSQC _Sample_label . save_ save_HMQC-NOESY-GHSQC_8 _Saveframe_category NMR_applied_experiment _Experiment_name HMQC-NOESY-GHSQC _Sample_label . save_ save_HMQC-J_9 _Saveframe_category NMR_applied_experiment _Experiment_name HMQC-J _Sample_label . save_ save_HNHA_10 _Saveframe_category NMR_applied_experiment _Experiment_name HNHA _Sample_label . save_ save_HACACB-COSY_11 _Saveframe_category NMR_applied_experiment _Experiment_name HACACB-COSY _Sample_label . save_ save_HNHB_12 _Saveframe_category NMR_applied_experiment _Experiment_name HNHB _Sample_label . save_ save_HSQC(3J_CGN)_13 _Saveframe_category NMR_applied_experiment _Experiment_name 'HSQC(3J CGN)' _Sample_label . save_ save_HSQC(3JCGC')_14 _Saveframe_category NMR_applied_experiment _Experiment_name HSQC(3JCGC') _Sample_label . save_ save_NMR_spec_expt__0_1 _Saveframe_category NMR_applied_experiment _Experiment_name DQF-COSY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_2 _Saveframe_category NMR_applied_experiment _Experiment_name TOCSY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_3 _Saveframe_category NMR_applied_experiment _Experiment_name NOESY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_4 _Saveframe_category NMR_applied_experiment _Experiment_name 'NOESY-HMQC (15N and 13C)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_5 _Saveframe_category NMR_applied_experiment _Experiment_name 'TOCSY-HMQC (15N)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_6 _Saveframe_category NMR_applied_experiment _Experiment_name HCCH-TOCSY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_7 _Saveframe_category NMR_applied_experiment _Experiment_name ROESY-GHSQC _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_8 _Saveframe_category NMR_applied_experiment _Experiment_name HMQC-NOESY-GHSQC _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_9 _Saveframe_category NMR_applied_experiment _Experiment_name HMQC-J _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_10 _Saveframe_category NMR_applied_experiment _Experiment_name HNHA _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_11 _Saveframe_category NMR_applied_experiment _Experiment_name HACACB-COSY _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_12 _Saveframe_category NMR_applied_experiment _Experiment_name HNHB _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_13 _Saveframe_category NMR_applied_experiment _Experiment_name 'HSQC(3J CGN)' _BMRB_pulse_sequence_accession_number . _Details . save_ save_NMR_spec_expt__0_14 _Saveframe_category NMR_applied_experiment _Experiment_name HSQC(3JCGC') _BMRB_pulse_sequence_accession_number . _Details . save_ ####################### # Sample conditions # ####################### save_sample_cond_1 _Saveframe_category sample_conditions _Details ; The sample was in dry form added to dry dodecyl phosphocholine. To this H2O or D2O was added. This sample was then vortexed and pH adjusted. The end volume was 500 uL. ; loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units pH 4.9 0.2 n/a temperature 311 1 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio TSP H 1 'methyl protons' ppm 0.0 external direct spherical external parallel . DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_chem_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name gVIIIp _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 1 ALA CA C 51.5 . 1 2 . 1 ALA HA H 4.04 . 1 3 . 1 ALA CB C 19.1 . 1 4 . 1 ALA HB H 1.47 . 1 5 . 2 GLU H H 8.68 . 1 6 . 2 GLU CA C 57.1 . 1 7 . 2 GLU HA H 4.19 . 1 8 . 2 GLU CB C 29.3 . 1 9 . 2 GLU HB2 H 1.90 . 1 10 . 2 GLU HB3 H 1.98 . 1 11 . 2 GLU HG2 H 2.24 . 2 12 . 2 GLU CG C 35.3 . 1 13 . 3 GLY N N 112.6 . 1 14 . 3 GLY H H 8.47 . 1 15 . 3 GLY CA C 44.6 . 1 16 . 3 GLY HA2 H 3.81 . 1 17 . 3 GLY HA3 H 3.94 . 1 18 . 4 ASP N N 122.0 . 1 19 . 4 ASP H H 7.92 . 1 20 . 4 ASP CA C 54.1 . 1 21 . 4 ASP HA H 4.52 . 1 22 . 4 ASP CB C 40.8 . 1 23 . 4 ASP HB2 H 2.57 . 1 24 . 4 ASP HB3 H 2.57 . 1 25 . 5 ASP N N 123.0 . 1 26 . 5 ASP H H 8.18 . 1 27 . 5 ASP CA C 52.0 . 1 28 . 5 ASP HA H 4.81 . 1 29 . 5 ASP CB C 40.8 . 1 30 . 5 ASP HB2 H 2.60 . 1 31 . 5 ASP HB3 H 2.74 . 1 32 . 6 PRO CA C 64.5 . 1 33 . 6 PRO HA H 4.30 . 1 34 . 6 PRO CB C 31.7 . 1 35 . 6 PRO HB2 H 1.86 . 1 36 . 6 PRO HB3 H 2.29 . 1 37 . 6 PRO HG2 H 1.99 . 1 38 . 6 PRO HD2 H 3.81 . 1 39 . 6 PRO HD3 H 3.81 . 1 40 . 6 PRO CG C 27.1 . 1 41 . 6 PRO CD C 50.7 . 1 42 . 7 ALA N N 123.1 . 1 43 . 7 ALA H H 8.26 . 1 44 . 7 ALA CA C 54.2 . 1 45 . 7 ALA HA H 4.10 . 1 46 . 7 ALA CB C 18.4 . 1 47 . 7 ALA HB H 1.36 . 1 48 . 8 LYS N N 120.4 . 1 49 . 8 LYS H H 7.67 . 1 50 . 8 LYS CA C 58.0 . 1 51 . 8 LYS HA H 4.01 . 1 52 . 8 LYS CB C 32.4 . 1 53 . 8 LYS HB2 H 1.83 . 1 54 . 8 LYS HB3 H 1.83 . 1 55 . 8 LYS HG2 H 1.34 . 1 56 . 8 LYS HG3 H 1.44 . 1 57 . 8 LYS HD2 H 1.65 . 1 58 . 8 LYS HE2 H 2.92 . 1 59 . 8 LYS CG C 25.0 . 1 60 . 8 LYS CD C 28.9 . 1 61 . 8 LYS CE C 41.8 . 1 62 . 9 ALA N N 124.2 . 1 63 . 9 ALA H H 7.92 . 1 64 . 9 ALA CA C 53.6 . 1 65 . 9 ALA HA H 4.15 . 1 66 . 9 ALA CB C 18.4 . 1 67 . 9 ALA HB H 1.36 . 1 68 . 10 ALA N N 123.8 . 1 69 . 10 ALA H H 8.05 . 1 70 . 10 ALA CA C 54.2 . 1 71 . 10 ALA HA H 4.08 . 1 72 . 10 ALA CB C 18.4 . 1 73 . 10 ALA HB H 1.35 . 1 74 . 11 PHE N N 120.0 . 1 75 . 11 PHE H H 8.19 . 1 76 . 11 PHE CA C 60.1 . 1 77 . 11 PHE HA H 4.21 . 1 78 . 11 PHE CB C 38.8 . 1 79 . 11 PHE HB2 H 3.07 . 1 80 . 11 PHE HB3 H 3.15 . 1 81 . 11 PHE HD1 H 7.15 . 3 82 . 11 PHE CD1 C 131.6 . 3 83 . 12 ASN N N 120.3 . 1 84 . 12 ASN H H 8.33 . 1 85 . 12 ASN CA C 55.0 . 1 86 . 12 ASN HA H 4.43 . 1 87 . 12 ASN CB C 38.3 . 1 88 . 12 ASN HB2 H 2.77 . 1 89 . 12 ASN HB3 H 2.83 . 1 90 . 12 ASN HD21 H 6.80 . 1 91 . 12 ASN HD22 H 7.51 . 1 92 . 12 ASN ND2 N 113.4 . 1 93 . 13 SER N N 118.0 . 1 94 . 13 SER H H 8.02 . 1 95 . 13 SER CA C 60.5 . 1 96 . 13 SER HA H 4.28 . 1 97 . 13 SER CB C 63.0 . 1 98 . 13 SER HB2 H 3.85 . 1 99 . 13 SER HB3 H 3.93 . 1 100 . 14 LEU N N 125.1 . 1 101 . 14 LEU H H 8.03 . 1 102 . 14 LEU CA C 57.1 . 1 103 . 14 LEU HA H 4.07 . 1 104 . 14 LEU CB C 41.8 . 1 105 . 14 LEU HB2 H 1.51 . 1 106 . 14 LEU HB3 H 1.66 . 1 107 . 14 LEU HG H 1.64 . 1 108 . 14 LEU HD1 H 0.76 . 1 109 . 14 LEU HD2 H 0.79 . 1 110 . 14 LEU CG C 27.1 . 1 111 . 14 LEU CD1 C 24.1 . 1 112 . 14 LEU CD2 C 25.0 . 1 113 . 15 GLN N N 120.0 . 1 114 . 15 GLN H H 8.16 . 1 115 . 15 GLN CA C 58.4 . 1 116 . 15 GLN HA H 3.83 . 1 117 . 15 GLN CB C 28.5 . 1 118 . 15 GLN HB2 H 1.91 . 1 119 . 15 GLN HB3 H 1.96 . 1 120 . 15 GLN HG2 H 2.13 . 1 121 . 15 GLN HG3 H 2.20 . 1 122 . 15 GLN HE21 H 6.64 . 1 123 . 15 GLN HE22 H 7.05 . 1 124 . 15 GLN CG C 33.9 . 1 125 . 15 GLN NE2 N 112.3 . 1 126 . 16 ALA N N 123.5 . 1 127 . 16 ALA H H 7.86 . 1 128 . 16 ALA CA C 54.0 . 1 129 . 16 ALA HA H 4.15 . 1 130 . 16 ALA CB C 18.5 . 1 131 . 16 ALA HB H 1.40 . 1 132 . 17 SER N N 115.8 . 1 133 . 17 SER H H 7.90 . 1 134 . 17 SER CA C 60.1 . 1 135 . 17 SER HA H 4.39 . 1 136 . 17 SER CB C 63.4 . 1 137 . 17 SER HB2 H 3.86 . 1 138 . 18 ALA N N 125.5 . 1 139 . 18 ALA H H 8.23 . 1 140 . 18 ALA CA C 54.6 . 1 141 . 18 ALA HA H 4.10 . 1 142 . 18 ALA CB C 18.4 . 1 143 . 18 ALA HB H 1.37 . 1 144 . 19 THR N N 111.7 . 1 145 . 19 THR H H 7.78 . 1 146 . 19 THR CA C 65.0 . 1 147 . 19 THR HA H 3.88 . 1 148 . 19 THR CB C 68.5 . 1 149 . 19 THR HB H 4.17 . 1 150 . 19 THR HG2 H 1.19 . 1 151 . 19 THR CG2 C 22.0 . 1 152 . 20 GLU N N 122.2 . 1 153 . 20 GLU H H 7.89 . 1 154 . 20 GLU CA C 57.6 . 1 155 . 20 GLU HA H 4.03 . 1 156 . 20 GLU CB C 28.5 . 1 157 . 20 GLU HB2 H 1.75 . 1 158 . 20 GLU HB3 H 1.87 . 1 159 . 20 GLU HG2 H 2.05 . 1 160 . 20 GLU HG3 H 2.16 . 1 161 . 20 GLU CG C 33.9 . 1 162 . 21 TYR N N 118.3 . 1 163 . 21 TYR H H 7.76 . 1 164 . 21 TYR CA C 58.6 . 1 165 . 21 TYR HA H 4.61 . 1 166 . 21 TYR CB C 38.7 . 1 167 . 21 TYR HB2 H 2.75 . 1 168 . 21 TYR HB3 H 3.25 . 1 169 . 21 TYR HD1 H 7.00 . 3 170 . 21 TYR HE1 H 6.71 . 3 171 . 21 TYR CD1 C 132.6 . 3 172 . 21 TYR CE1 C 117.8 . 3 173 . 22 ILE N N 121.2 . 1 174 . 22 ILE H H 7.53 . 1 175 . 22 ILE CA C 63.4 . 1 176 . 22 ILE HA H 3.89 . 1 177 . 22 ILE CB C 38.3 . 1 178 . 22 ILE HB H 1.96 . 1 179 . 22 ILE HG12 H 1.24 . 1 180 . 22 ILE HG13 H 1.54 . 1 181 . 22 ILE HG2 H 0.93 . 1 182 . 22 ILE HD1 H 0.83 . 1 183 . 22 ILE CG1 C 28.9 . 1 184 . 22 ILE CG2 C 13.5 . 1 185 . 22 ILE CD1 C 13.5 . 1 186 . 23 GLY N N 111.1 . 1 187 . 23 GLY H H 8.49 . 1 188 . 23 GLY CA C 46.1 . 1 189 . 23 GLY HA2 H 3.75 . 1 190 . 23 GLY HA3 H 3.89 . 1 191 . 24 TYR N N 119.9 . 1 192 . 24 TYR H H 7.81 . 1 193 . 24 TYR CA C 59.6 . 1 194 . 24 TYR HA H 4.34 . 1 195 . 24 TYR CB C 38.2 . 1 196 . 24 TYR HB2 H 2.99 . 1 197 . 24 TYR HB3 H 3.06 . 1 198 . 24 TYR HD1 H 7.04 . 3 199 . 24 TYR HE1 H 6.78 . 3 200 . 24 TYR CD1 C 132.1 . 3 201 . 24 TYR CE1 C 118.4 . 3 202 . 25 ALA N N 123.8 . 1 203 . 25 ALA H H 8.05 . 1 204 . 25 ALA CA C 55.6 . 1 205 . 25 ALA HA H 3.93 . 1 206 . 25 ALA CB C 18.0 . 1 207 . 25 ALA HB H 1.35 . 1 208 . 26 TRP N N 118.0 . 1 209 . 26 TRP H H 8.20 . 1 210 . 26 TRP CA C 59.6 . 1 211 . 26 TRP HA H 4.31 . 1 212 . 26 TRP CB C 28.9 . 1 213 . 26 TRP HB2 H 3.19 . 1 214 . 26 TRP HB3 H 3.25 . 1 215 . 26 TRP HD1 H 7.29 . 1 216 . 26 TRP HE1 H 10.22 . 1 217 . 26 TRP HE3 H 7.35 . 1 218 . 26 TRP HZ2 H 6.82 . 1 219 . 26 TRP HZ3 H 7.32 . 1 220 . 26 TRP HH2 H 6.95 . 1 221 . 26 TRP CD1 C 127.1 . 1 222 . 26 TRP CE3 C 119.7 . 1 223 . 26 TRP CZ2 C 114.3 . 1 224 . 26 TRP CZ3 C 120.7 . 1 225 . 26 TRP CH2 C 123.2 . 1 226 . 26 TRP NE1 N 130.9 . 1 227 . 27 ALA N N 122.5 . 1 228 . 27 ALA H H 7.57 . 1 229 . 27 ALA CA C 55.3 . 1 230 . 27 ALA HA H 3.75 . 1 231 . 27 ALA CB C 18.1 . 1 232 . 27 ALA HB H 1.25 . 1 233 . 28 MET N N 117.1 . 1 234 . 28 MET H H 7.83 . 1 235 . 28 MET CA C 58.3 . 1 236 . 28 MET HA H 3.99 . 1 237 . 28 MET CB C 31.7 . 1 238 . 28 MET HB2 H 2.05 . 1 239 . 28 MET HB3 H 2.13 . 1 240 . 28 MET HG2 H 2.37 . 1 241 . 28 MET HG3 H 2.48 . 1 242 . 28 MET HE H 1.83 . 1 243 . 28 MET CG C 32.7 . 1 244 . 28 MET CE C 17.2 . 1 245 . 29 VAL N N 120.3 . 1 246 . 29 VAL H H 7.89 . 1 247 . 29 VAL CA C 67.5 . 1 248 . 29 VAL HA H 3.40 . 1 249 . 29 VAL CB C 30.9 . 1 250 . 29 VAL HB H 2.33 . 1 251 . 29 VAL HG1 H 0.83 . 1 252 . 29 VAL HG2 H 0.93 . 1 253 . 29 VAL CG1 C 21.4 . 1 254 . 29 VAL CG2 C 23.0 . 1 255 . 30 VAL N N 120.3 . 1 256 . 30 VAL H H 7.86 . 1 257 . 30 VAL CA C 67.5 . 1 258 . 30 VAL HA H 3.33 . 1 259 . 30 VAL CB C 30.7 . 1 260 . 30 VAL HB H 2.17 . 1 261 . 30 VAL HG1 H 0.80 . 1 262 . 30 VAL HG2 H 0.90 . 1 263 . 30 VAL CG1 C 21.4 . 1 264 . 30 VAL CG2 C 23.0 . 1 265 . 31 VAL N N 120.3 . 1 266 . 31 VAL H H 7.90 . 1 267 . 31 VAL CA C 67.0 . 1 268 . 31 VAL HA H 3.46 . 1 269 . 31 VAL CB C 30.7 . 1 270 . 31 VAL HB H 2.15 . 1 271 . 31 VAL HG1 H 0.77 . 1 272 . 31 VAL HG2 H 0.94 . 1 273 . 31 VAL CG1 C 21.1 . 1 274 . 31 VAL CG2 C 23.0 . 1 275 . 32 ILE N N 120.8 . 1 276 . 32 ILE H H 8.20 . 1 277 . 32 ILE CA C 65.5 . 1 278 . 32 ILE HA H 3.54 . 1 279 . 32 ILE CB C 37.8 . 1 280 . 32 ILE HB H 1.86 . 1 281 . 32 ILE HG12 H 0.94 . 1 282 . 32 ILE HG13 H 1.77 . 1 283 . 32 ILE HG2 H 0.76 . 1 284 . 32 ILE HD1 H 0.68 . 1 285 . 32 ILE CG1 C 29.4 . 1 286 . 32 ILE CG2 C 13.1 . 1 287 . 32 ILE CD1 C 13.1 . 1 288 . 33 VAL N N 123.7 . 1 289 . 33 VAL H H 8.69 . 1 290 . 33 VAL CA C 67.5 . 1 291 . 33 VAL HA H 3.44 . 1 292 . 33 VAL CB C 30.7 . 1 293 . 33 VAL HB H 2.11 . 1 294 . 33 VAL HG1 H 0.80 . 1 295 . 33 VAL HG2 H 0.95 . 1 296 . 33 VAL CG1 C 21.4 . 1 297 . 33 VAL CG2 C 23.0 . 1 298 . 34 GLY N N 109.7 . 1 299 . 34 GLY H H 8.89 . 1 300 . 34 GLY CA C 47.7 . 1 301 . 34 GLY HA2 H 3.50 . 1 302 . 35 ALA N N 123.9 . 1 303 . 35 ALA H H 8.83 . 1 304 . 35 ALA CA C 54.6 . 1 305 . 35 ALA HA H 3.93 . 1 306 . 35 ALA CB C 18.0 . 1 307 . 35 ALA HB H 1.35 . 1 308 . 36 THR N N 115.3 . 1 309 . 36 THR H H 7.85 . 1 310 . 36 THR CA C 67.5 . 1 311 . 36 THR HA H 3.74 . 1 312 . 36 THR CB C 68.0 . 1 313 . 36 THR HB H 4.22 . 1 314 . 36 THR HG2 H 1.07 . 1 315 . 36 THR CG2 C 21.4 . 1 316 . 37 ILE N N 122.0 . 1 317 . 37 ILE H H 8.23 . 1 318 . 37 ILE CA C 65.0 . 1 319 . 37 ILE HA H 3.57 . 1 320 . 37 ILE CB C 37.8 . 1 321 . 37 ILE HB H 1.91 . 1 322 . 37 ILE HG12 H 1.01 . 1 323 . 37 ILE HG13 H 1.78 . 1 324 . 37 ILE HG2 H 0.82 . 1 325 . 37 ILE HD1 H 0.74 . 1 326 . 37 ILE CG1 C 28.9 . 1 327 . 37 ILE CG2 C 13.5 . 1 328 . 37 ILE CD1 C 13.5 . 1 329 . 38 GLY N N 109.4 . 1 330 . 38 GLY H H 8.67 . 1 331 . 38 GLY CA C 47.7 . 1 332 . 38 GLY HA2 H 3.61 . 1 333 . 39 ILE N N 122.9 . 1 334 . 39 ILE H H 8.53 . 1 335 . 39 ILE CA C 65.0 . 1 336 . 39 ILE HA H 3.75 . 1 337 . 39 ILE CB C 37.8 . 1 338 . 39 ILE HB H 1.92 . 1 339 . 39 ILE HG12 H 1.02 . 1 340 . 39 ILE HG13 H 1.83 . 1 341 . 39 ILE HG2 H 0.91 . 1 342 . 39 ILE HD1 H 0.80 . 1 343 . 39 ILE CG1 C 29.8 . 1 344 . 39 ILE CG2 C 13.5 . 1 345 . 39 ILE CD1 C 13.5 . 1 346 . 40 LYS N N 120.9 . 1 347 . 40 LYS H H 7.88 . 1 348 . 40 LYS CA C 58.0 . 1 349 . 40 LYS HA H 4.01 . 1 350 . 40 LYS CB C 31.7 . 1 351 . 40 LYS HB2 H 1.82 . 1 352 . 40 LYS HB3 H 1.97 . 1 353 . 40 LYS HG2 H 1.52 . 1 354 . 40 LYS HD2 H 1.43 . 1 355 . 40 LYS HD3 H 1.52 . 1 356 . 40 LYS HE2 H 2.81 . 1 357 . 40 LYS HE3 H 2.86 . 1 358 . 40 LYS CG C 25.0 . 1 359 . 40 LYS CD C 28.9 . 1 360 . 40 LYS CE C 41.3 . 1 361 . 41 LEU N N 120.9 . 1 362 . 41 LEU H H 8.56 . 1 363 . 41 LEU CA C 57.1 . 1 364 . 41 LEU HA H 4.06 . 1 365 . 41 LEU CB C 41.8 . 1 366 . 41 LEU HB2 H 1.37 . 1 367 . 41 LEU HB3 H 1.91 . 1 368 . 41 LEU HG H 1.80 . 1 369 . 41 LEU HD1 H 0.80 . 1 370 . 41 LEU HD2 H 0.80 . 1 371 . 41 LEU CG C 27.1 . 1 372 . 41 LEU CD1 C 23.5 . 1 373 . 41 LEU CD2 C 25.5 . 1 374 . 42 PHE N N 121.8 . 1 375 . 42 PHE H H 8.57 . 1 376 . 42 PHE CA C 61.6 . 1 377 . 42 PHE HA H 4.15 . 1 378 . 42 PHE CB C 39.3 . 1 379 . 42 PHE HB2 H 3.16 . 1 380 . 42 PHE HB3 H 3.26 . 1 381 . 42 PHE HD1 H 7.07 . 3 382 . 42 PHE HD2 H 7.22 . 3 383 . 42 PHE CD1 C 131.1 . 3 384 . 43 LYS N N 120.6 . 1 385 . 43 LYS H H 8.29 . 1 386 . 43 LYS CA C 58.6 . 1 387 . 43 LYS HA H 3.84 . 1 388 . 43 LYS CB C 31.7 . 1 389 . 43 LYS HB2 H 1.82 . 1 390 . 43 LYS HB3 H 1.90 . 1 391 . 43 LYS HG2 H 1.47 . 1 392 . 43 LYS HG3 H 1.64 . 1 393 . 43 LYS HD2 H 1.64 . 1 394 . 43 LYS HE2 H 2.88 . 1 395 . 43 LYS CG C 25.5 . 1 396 . 43 LYS CD C 28.9 . 1 397 . 43 LYS CE C 41.3 . 1 398 . 44 LYS N N 121.3 . 1 399 . 44 LYS H H 7.80 . 1 400 . 44 LYS CA C 58.3 . 1 401 . 44 LYS HA H 4.01 . 1 402 . 44 LYS CB C 32.4 . 1 403 . 44 LYS HB2 H 1.67 . 1 404 . 44 LYS HB3 H 1.76 . 1 405 . 44 LYS HG2 H 1.08 . 1 406 . 44 LYS HG3 H 1.23 . 1 407 . 44 LYS HD2 H 1.43 . 1 408 . 44 LYS HD3 H 1.52 . 1 409 . 44 LYS HE2 H 2.77 . 1 410 . 44 LYS CG C 24.5 . 1 411 . 44 LYS CD C 28.9 . 1 412 . 44 LYS CE C 41.3 . 1 413 . 45 PHE N N 118.3 . 1 414 . 45 PHE H H 8.10 . 1 415 . 45 PHE CA C 59.1 . 1 416 . 45 PHE HA H 4.45 . 1 417 . 45 PHE CB C 39.3 . 1 418 . 45 PHE HB2 H 2.90 . 1 419 . 45 PHE HB3 H 3.16 . 1 420 . 45 PHE HD1 H 7.24 . 3 421 . 45 PHE CD1 C 131.6 . 3 422 . 46 THR N N 110.9 . 1 423 . 46 THR H H 7.52 . 1 424 . 46 THR CA C 62.0 . 1 425 . 46 THR HA H 4.25 . 1 426 . 46 THR CB C 69.5 . 1 427 . 46 THR HB H 4.09 . 1 428 . 46 THR HG2 H 0.88 . 1 429 . 46 THR CG2 C 21.4 . 1 430 . 47 SER N N 119.4 . 1 431 . 47 SER H H 7.65 . 1 432 . 47 SER CA C 58.6 . 1 433 . 47 SER HA H 4.35 . 1 434 . 47 SER CB C 63.5 . 1 435 . 47 SER HB2 H 3.83 . 1 436 . 48 LYS N N 124.9 . 1 437 . 48 LYS H H 8.13 . 1 438 . 48 LYS CA C 56.2 . 1 439 . 48 LYS HA H 4.27 . 1 440 . 48 LYS CB C 32.7 . 1 441 . 48 LYS HB2 H 1.68 . 1 442 . 48 LYS HB3 H 1.80 . 1 443 . 48 LYS HG2 H 1.36 . 1 444 . 48 LYS HD2 H 1.61 . 1 445 . 48 LYS CG C 24.5 . 1 446 . 48 LYS CD C 28.9 . 1 447 . 49 ALA N N 127.8 . 1 448 . 49 ALA H H 8.18 . 1 449 . 49 ALA CA C 52.4 . 1 450 . 49 ALA HA H 4.28 . 1 451 . 49 ALA CB C 19.6 . 1 452 . 49 ALA HB H 1.31 . 1 453 . 50 SER N N 122.4 . 1 454 . 50 SER H H 7.74 . 1 455 . 50 SER CA C 59.5 . 1 456 . 50 SER HA H 4.15 . 1 stop_ save_ ######################## # Coupling constants # ######################## save_coupling_constants_set_1 _Saveframe_category coupling_constants _Details ; Couplings not reported are not resolved due to overlap. Residue 06 is a proline residue. Data collected at both 400 and 500 MHz ; loop_ _Sample_label $sample_1 stop_ _Sample_conditions_label $sample_cond_1 _Spectrometer_frequency_1H 500 _Mol_system_component_name gVIIIp _Text_data_format . _Text_data . loop_ _Coupling_constant_ID _Coupling_constant_code _Atom_one_residue_seq_code _Atom_one_residue_label _Atom_one_name _Atom_two_residue_seq_code _Atom_two_residue_label _Atom_two_name _Coupling_constant_value _Coupling_constant_min_value _Coupling_constant_max_value _Coupling_constant_value_error 1 3JHNHA 4 ASP H 4 ASP HA . 6 8 . 2 3JHNHA 5 ASP H 5 ASP HA . 6 8 . 3 3JHNHA 7 ALA H 7 ALA HA . . 6 . 4 3JHNHA 8 LYS H 8 LYS HA . 6 8 . 5 3JHNHA 9 ALA H 9 ALA HA . . 6 . 6 3JHNHA 12 ASN H 12 ASN HA . . 6 . 7 3JHNHA 13 SER H 13 SER HA . . 6 . 8 3JHNHA 14 LEU H 14 LEU HA . . 6 . 9 3JHNHA 16 ALA H 16 ALA HA . . 6 . 10 3JHNHA 18 ALA H 18 ALA HA . . 6 . 11 3JHNHA 19 THR H 19 THR HA . . 6 . 12 3JHNHA 20 GLU H 20 GLU HA . . 6 . 13 3JHNHA 21 TYR H 21 TYR HA . 8 . . 14 3JHNHA 24 TYR H 24 TYR HA . 6 8 . 15 3JHNHA 28 MET H 28 MET HA . . 6 . 16 3JHNHA 31 VAL H 31 VAL HA . . 6 . 17 3JHNHA 32 ILE H 32 ILE HA . . 6 . 18 3JHNHA 35 ALA H 35 ALA HA . . 6 . 19 3JHNHA 39 ILE H 39 ILE HA . . 6 . 20 3JHNHA 40 LYS H 40 LYS HA . . 6 . 21 3JHNHA 41 LEU H 41 LEU HA . . 6 . 22 3JHNHA 42 PHE H 42 PHE HA . . 6 . 23 3JHNHA 44 LYS H 44 LYS HA . . 6 . 24 3JHNHA 45 PHE H 45 PHE HA . 6 8 . 25 3JHNHA 46 THR H 46 THR HA . 8 . . 26 3JHNHA 47 SER H 47 SER HA . 6 8 . 27 3JHNHA 48 LYS H 48 LYS HA . 6 8 . 28 3JHNHA 49 ALA H 49 ALA HA . 6 8 . 29 3JHNHA 50 SER H 50 SER HA . 6 8 . stop_ save_