data_5894 ####################### # Entry information # ####################### save_entry_information _Saveframe_category entry_information _Entry_title ; 1H, 13C, and 15N resonance assignments for the N-terminal domain of Drosophila Stem-Loop Binding Protein ; _BMRB_accession_number 5894 _BMRB_flat_file_name bmr5894.str _Entry_type original _Submission_date 2003-07-31 _Accession_date 2003-08-01 _Entry_origination author _NMR_STAR_version 2.1.1 _Experimental_method NMR _Details . loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Thapar Roopa . . 2 Marzluff William F. . stop_ loop_ _Saveframe_category_type _Saveframe_category_type_count assigned_chemical_shifts 1 stop_ loop_ _Data_type _Data_type_count "1H chemical shifts" 145 "13C chemical shifts" 280 "15N chemical shifts" 82 stop_ loop_ _Revision_date _Revision_keyword _Revision_author _Revision_detail 2004-10-25 original author . stop_ _Original_release_date 2004-10-25 save_ ############################# # Citation for this entry # ############################# save_entry_citation _Saveframe_category entry_citation _Citation_full . _Citation_title ; The N-terminal domain of the Drosophila histone mRNA binding protein, SLBP, is intrinsically disordered with nascent helical structure. ; _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 15260482 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Thapar Roopa . . 2 Mueller G. A. . 3 Marzluff William F. . stop_ _Journal_abbreviation Biochemistry _Journal_volume 43 _Journal_issue 29 _Journal_CSD . _Book_chapter_title . _Book_volume . _Book_series . _Book_ISBN . _Conference_state_province . _Conference_abstract_number . _Page_first 9390 _Page_last 9400 _Year 2004 _Details . loop_ _Keyword 'histone mRNA' 'NMR assignment' SLBP translation stop_ save_ ####################################### # Cited references within the entry # ####################################### save_ref_1 _Saveframe_category citation _Citation_full ; Battle DJ, Doudna JA. Specificity of RNA-RNA helix recognition. Proc Natl Acad Sci U S A. 2002 Sep 3;99(18):11676-81. Epub 2002 Aug 20. ; _Citation_title 'Specificity of RNA-RNA helix recognition.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12189204 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Battle 'Daniel J.' J. . 2 Doudna 'Jennifer A.' A. . stop_ _Journal_abbreviation 'Proc. Natl. Acad. Sci. U.S.A.' _Journal_name_full 'Proceedings of the National Academy of Sciences of the United States of America' _Journal_volume 99 _Journal_issue 18 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 11676 _Page_last 11681 _Year 2002 _Details ; Functional RNAs often form compact structures characterized by closely packed helices. Crystallographic analysis of several large RNAs revealed a prevalent interaction in which unpaired adenosine residues dock into the minor groove of a receptor helix. This A-minor motif, potentially the most important element responsible for global RNA architecture, has also been suggested to contribute to the fidelity of protein synthesis by discriminating against near-cognate tRNAs on the ribosome. The specificity of A-minor interactions is fundamental to RNA tertiary structure formation, as well as to their proposed role in translational accuracy. To investigate A-minor motif specificity, we analyzed mutations in an A-minor interaction within the Tetrahymena group I self-splicing intron. Thermodynamic and x-ray crystallographic results show that the A-minor interaction strongly prefers canonical base pairs over base mismatches in the receptor helix, enabling RNA interhelical packing through specific recognition of Watson-Crick minor groove geometry. ; save_ save_ref_2 _Saveframe_category citation _Citation_full ; Dominski Z, Marzluff WF. Formation of the 3' end of histone mRNA. Gene. 1999 Oct 18;239(1):1-14. Review. ; _Citation_title "Formation of the 3' end of histone mRNA." _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 10571029 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Dominski Z. . . 2 Marzluff 'W. F.' F. . stop_ _Journal_abbreviation Gene _Journal_name_full Gene _Journal_volume 239 _Journal_issue 1 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1 _Page_last 14 _Year 1999 _Details ; All metazoan messenger RNAs, with the exception of the replication-dependent histone mRNAs, terminate at the 3' end with a poly(A) tail. Replication-dependent histone mRNAs end instead in a conserved 26-nucleotide sequence that contains a 16-nucleotide stem-loop. Formation of the 3' end of histone mRNA occurs by endonucleolytic cleavage of pre-mRNA releasing the mature mRNA from the chromatin template. Cleavage requires several trans-acting factors, including a protein, the stem-loop binding protein (SLBP), which binds the 26-nucleotide sequence; and a small nuclear RNP, U7 snRNP. There are probably additional factors also required for cleavage. One of the functions of the SLBP is to stabilize binding of the U7 snRNP to the histone pre-mRNA. In the nucleus, both U7 snRNP and SLBP are present in coiled bodies, structures that are associated with histone genes and may play a direct role in histone pre-mRNA processing in vivo. One of the major regulatory events in the cell cycle is regulation of histone pre-mRNA processing, which is at least partially mediated by cell-cycle regulation of the levels of the SLBP protein. ; save_ save_ref_3 _Saveframe_category citation _Citation_full ; Dominski Z, Yang XC, Raska CS, Santiago C, Borchers CH, Duronio RJ, Marzluff WF. 3' end processing of Drosophila melanogaster histone pre-mRNAs: requirement for phosphorylated Drosophila stem-loop binding protein and coevolution of the histone pre-mRNA processing system. Mol Cell Biol. 2002 Sep;22(18):6648-60. ; _Citation_title "3' end processing of Drosophila melanogaster histone pre-mRNAs: requirement for phosphorylated Drosophila stem-loop binding protein and coevolution of the histone pre-mRNA processing system." _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12192062 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Dominski Zbigniew . . 2 Yang Xiao-Cui C. . 3 Raska 'Christy S.' S. . 4 Santiago Carlos . . 5 Borchers 'Christoph H.' H. . 6 Duronio 'Robert J.' J. . 7 Marzluff 'William F.' F. . stop_ _Journal_abbreviation 'Mol. Cell. Biol.' _Journal_name_full 'Molecular and cellular biology' _Journal_volume 22 _Journal_issue 18 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 6648 _Page_last 6660 _Year 2002 _Details ; Synthetic pre-mRNAs containing the processing signals encoded by Drosophila melanogaster histone genes undergo efficient and faithful endonucleolytic cleavage in nuclear extracts prepared from Drosophila cultured cells and 0- to 13-h-old embryos. Biochemical requirements for the in vitro cleavage are similar to those previously described for the 3' end processing of mammalian histone pre-mRNAs. Drosophila 3' end processing does not require ATP and occurs in the presence of EDTA. However, in contrast to mammalian processing, Drosophila processing generates the final product ending four nucleotides after the stem-loop. Cleavage of the Drosophila substrates is abolished by depleting the extract of the Drosophila stem-loop binding protein (dSLBP), indicating that both dSLBP and the stem-loop structure in histone pre-mRNA are essential components of the processing machinery. Recombinant dSLBP expressed in insect cells by using the baculovirus system efficiently complements the depleted extract. Only the RNA-binding domain plus the 17 amino acids at the C terminus of dSLBP are required for processing. The full-length dSLBP expressed in insect cells is quantitatively phosphorylated on four residues in the C-terminal region. Dephosphorylation of the recombinant dSLBP reduces processing activity. Human and Drosophila SLBPs are not interchangeable and strongly inhibit processing in the heterologous extracts. The RNA-binding domain of the dSLBP does not substitute for the RNA-binding domain of the human SLBP in histone pre-mRNA processing in mammalian extracts. In addition to the stem-loop structure and dSLBP, 3' processing in Drosophila nuclear extracts depends on the presence of a short stretch of purines located ca. 20 nucleotides downstream from the stem, and an Sm-reactive factor, most likely the Drosophila counterpart of vertebrate U7 snRNP. ; save_ save_ref_4 _Saveframe_category citation _Citation_full ; Grzesiek, S. and Bax, A. (1992) J. Magn. Reson. 99, 201-207. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_5 _Saveframe_category citation _Citation_full ; Grzesiek, S., Anglister, J. and Bax, A. (1993) J. Magn. Reson. B 101, 114-119. ; _Citation_title . _Citation_status . _Citation_type . _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID ? _Journal_abbreviation . _Journal_name_full . _Journal_volume . _Journal_issue . _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first . _Page_last . _Year . _Details . save_ save_ref_6 _Saveframe_category citation _Citation_full ; Marzluff WF, Duronio RJ. Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences. Curr Opin Cell Biol. 2002 Dec;14(6):692-9. Review. ; _Citation_title 'Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12473341 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Marzluff 'William F.' F. . 2 Duronio 'Robert J.' J. . stop_ _Journal_abbreviation 'Curr. Opin. Cell Biol.' _Journal_name_full 'Current opinion in cell biology' _Journal_volume 14 _Journal_issue 6 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 692 _Page_last 699 _Year 2002 _Details ; Histone mRNA metabolism is tightly coupled to cell cycle progression and to rates of DNA synthesis. The recent identification of several novel proteins involved in histone gene transcription and pre-mRNA processing has shed light on the variety of mechanisms cells employ to achieve this coupling. ; save_ save_ref_7 _Saveframe_category citation _Citation_full ; Sanchez R, Marzluff WF. The stem-loop binding protein is required for efficient translation of histone mRNA in vivo and in vitro. Mol Cell Biol. 2002 Oct;22(20):7093-104. ; _Citation_title 'The stem-loop binding protein is required for efficient translation of histone mRNA in vivo and in vitro.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 12242288 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Sanchez Ricardo . . 2 Marzluff 'William F.' F. . stop_ _Journal_abbreviation 'Mol. Cell. Biol.' _Journal_name_full 'Molecular and cellular biology' _Journal_volume 22 _Journal_issue 20 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 7093 _Page_last 7104 _Year 2002 _Details ; Metazoan replication-dependent histone mRNAs end in a conserved stem-loop rather than in the poly(A) tail found on all other mRNAs. The 3' end of histone mRNA binds a single class of proteins, the stem-loop binding proteins (SLBP). In Xenopus, there are two SLBPs: xSLBP1, the homologue of the mammalian SLBP, which is required for processing of histone pre-mRNA, and xSLBP2, which is expressed only during oogenesis and is bound to the stored histone mRNA in Xenopus oocytes. The stem-loop is required for efficient translation of histone mRNAs and substitutes for the poly(A) tail, which is required for efficient translation of other eucaryotic mRNAs. When a rabbit reticulocyte lysate is programmed with uncapped luciferase mRNA ending in the histone stem-loop, there is a three- to sixfold increase in translation in the presence of xSLBP1 while xSLBP2 has no effect on translation. Neither SLBP affected the translation of a luciferase mRNA ending in a mutant stem-loop that does not bind SLBP. Capped luciferase mRNAs ending in the stem-loop were injected into Xenopus oocytes after overexpression of either xSLBP1 or xSLBP2. Overexpression of xSLBP1 in the oocytes stimulated translation, while overexpression of xSLBP2 reduced translation of the luciferase mRNA ending in the histone stem-loop. A small region in the N-terminal portion of xSLBP1 is required to stimulate translation both in vivo and in vitro. An MS2-human SLBP1 fusion protein can activate translation of a reporter mRNA ending in an MS2 binding site, indicating that xSLBP1 only needs to be recruited to the 3' end of the mRNA but does not need to be directly bound to the histone stem-loop to activate translation. ; save_ save_ref_8 _Saveframe_category citation _Citation_full ; Sullivan E, Santiago C, Parker ED, Dominski Z, Yang X, Lanzotti DJ, Ingledue TC, Marzluff WF, Duronio RJ. Drosophila stem loop binding protein coordinates accumulation of mature histone mRNA with cell cycle progression. Genes Dev. 2001 Jan 15;15(2):173-87. ; _Citation_title 'Drosophila stem loop binding protein coordinates accumulation of mature histone mRNA with cell cycle progression.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 11157774 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Sullivan E. . . 2 Santiago C. . . 3 Parker 'E. D.' D. . 4 Dominski Z. . . 5 Yang X. . . 6 Lanzotti 'D. J.' J. . 7 Ingledue 'T. C.' C. . 8 Marzluff 'W. F.' F. . 9 Duronio 'R. J.' J. . stop_ _Journal_abbreviation 'Genes Dev.' _Journal_name_full 'Genes & development' _Journal_volume 15 _Journal_issue 2 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 173 _Page_last 187 _Year 2001 _Details ; Replication-associated histone genes encode the only metazoan mRNAs that lack polyA tails, ending instead in a conserved 26-nt sequence that forms a stem-loop. Most of the regulation of mammalian histone mRNA is posttranscriptional and mediated by this unique 3' end. Stem-loop-binding protein (SLBP) binds to the histone mRNA 3' end and is thought to participate in all aspects of histone mRNA metabolism, including cell cycle regulation. To examine SLBP function genetically, we have cloned the gene encoding Drosophila SLBP (dSLBP) by a yeast three-hybrid method and have isolated mutations in dSLBP. dSLBP function is required both zygotically and maternally. Strong dSLBP alleles cause zygotic lethality late in development and result in production of stable histone mRNA that accumulates in nonreplicating cells. These histone mRNAs are cytoplasmic and have polyadenylated 3' ends like other polymerase II transcripts. Hypomorphic dSLBP alleles support zygotic development but cause female sterility. Eggs from these females contain dramatically reduced levels of histone mRNA, and mutant embryos are not able to complete the syncytial embryonic cycles. This is in part because of a failure of chromosome condensation at mitosis that blocks normal anaphase. These data demonstrate that dSLBP is required in vivo for 3' end processing of histone pre-mRNA, and that this is an essential function for development. Moreover, dSLBP-dependent processing plays an important role in coupling histone mRNA production with the cell cycle. ; save_ save_ref_9 _Saveframe_category citation _Citation_full ; Williams AS, Marzluff WF. The sequence of the stem and flanking sequences at the 3' end of histone mRNA are critical determinants for the binding of the stem-loop binding protein. Nucleic Acids Res. 1995 Feb 25;23(4):654-62. ; _Citation_title "The sequence of the stem and flanking sequences at the 3' end of histone mRNA are critical determinants for the binding of the stem-loop binding protein." _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 7899087 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Williams 'A. S.' S. . 2 Marzluff 'W. F.' F. . stop_ _Journal_abbreviation 'Nucleic Acids Res.' _Journal_name_full 'Nucleic acids research' _Journal_volume 23 _Journal_issue 4 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 654 _Page_last 662 _Year 1995 _Details ; Complexes of different electrophoretic mobility containing the stem-loop binding protein, a 45 kDa protein, bound to the stem-loop at the 3' end of histone mRNA, are present in both nuclear and cytoplasmic extracts from mammalian cells. We have determined the effect of changes in the loop, in the stem and in the flanking sequences on the affinity of the SLBP for the 3' end of histone mRNA. The sequence of the stem is particularly critical for SLBP binding. Specific sequences both 5' and 3' of the stem-loop are also required for high-affinity binding. Expanding the four base loop by one or two uridines reduced but did not abolish SLBP binding. RNA footprinting experiments show that the flanking sequences on both sides of the stem-loop are critical for efficient binding, but that cleavages in the loop do not abolish binding. Thus all three regions of the RNA sequence contribute to SLBP binding, suggesting that the 26 nt at the 3' end of histone mRNA forms a defined tertiary structure recognized by the SLBP. ; save_ save_ref_10 _Saveframe_category citation _Citation_full ; Wishart DS, Sykes BD, Richards FM. The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry. 1992 Feb 18;31(6):1647-51. ; _Citation_title 'The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy.' _Citation_status published _Citation_type journal _CAS_abstract_code . _MEDLINE_UI_code . _PubMed_ID 1737021 loop_ _Author_ordinal _Author_family_name _Author_given_name _Author_middle_initials _Author_family_title 1 Wishart 'D. S.' S. . 2 Sykes 'B. D.' D. . 3 Richards 'F. M.' M. . stop_ _Journal_abbreviation Biochemistry _Journal_name_full Biochemistry _Journal_volume 31 _Journal_issue 6 _Journal_CSD . _Book_title . _Book_chapter_title . _Book_volume . _Book_series . _Book_publisher . _Book_publisher_city . _Book_ISBN . _Conference_title . _Conference_site . _Conference_state_province . _Conference_country . _Conference_start_date . _Conference_end_date . _Conference_abstract_number . _Thesis_institution . _Thesis_institution_city . _Thesis_institution_country . _Page_first 1647 _Page_last 1651 _Year 1992 _Details ; Previous studies by Wishart et al. [Wishart, D. S., Sykes, B. D., & Richards, F. M. (1991) J. Mol. Biol. (in press)] have demonstrated that 1H NMR chemical shifts are strongly dependent on the character and nature of protein secondary structure. In particular, it has been found that the 1H NMR chemical shift of the alpha-CH proton of all 20 naturally occurring amino acids experiences an upfield shift (with respect to the random coil value) when in a helical configuration and a comparable downfield shift when in a beta-strand extended configuration. On the basis of these observations, a technique is described for rapidly and quantitatively determining the identity, extent, and location of secondary structural elements in proteins based on the simple inspection of the alpha-CH 1H resonance assignments. A number of examples are provided to demonstrate both the simplicity and the accuracy of the technique. This new method is found to be almost as accurate as the more traditional NOE-based methods of determining secondary structure and could prove to be particularly useful in light of the recent development of sequential assignment techniques which are now almost NOE-independent [Ikura, M., Kay, L. E., & Bax, A. (1990) Biochemistry 29, 4659-4667]. We suggest that this new procedure should not necessarily be seen as a substitute to existing rigorous methods for secondary structure determination but, rather, should be viewed as a complement to these approaches. ; save_ ################################## # Molecular system description # ################################## save_system_SLBP _Saveframe_category molecular_system _Mol_system_name 'drosophila SLBP N-terminus' _Abbreviation_common SLBP _Enzyme_commission_number . loop_ _Mol_system_component_name _Mol_label 'Drosophila SLBP N-terminus' $dSLBP_N-term stop_ _System_molecular_weight . _System_physical_state native _System_oligomer_state monomer _System_paramagnetic no _System_thiol_state 'all free' loop_ _Biological_function 'Regulation of histone mRNA gene expression' 'translation regulator for histone genes' stop_ _Database_query_date . _Details . save_ ######################## # Monomeric polymers # ######################## save_dSLBP_N-term _Saveframe_category monomeric_polymer _Mol_type polymer _Mol_polymer_class protein _Name_common 'Stem loop binding protein' _Abbreviation_common SLBP _Molecular_mass 12070 _Mol_thiol_state 'all free' _Details . ############################## # Polymer residue sequence # ############################## _Residue_count 113 _Mol_residue_sequence ; MGSSHHHHHHSSGLVPRGSH MGSGSLNSSASSISIDVKPT MQSWAQEVRAEFGHSDEASS SLNSSAASCGSLAKKETADG NLESKDGEGREMAFEFLDGV NEVKFERLVKEEK ; loop_ _Residue_seq_code _Residue_author_seq_code _Residue_label 1 -5 MET 2 -4 GLY 3 -3 SER 4 -2 SER 5 -1 HIS 6 1 HIS 7 2 HIS 8 3 HIS 9 4 HIS 10 5 HIS 11 6 SER 12 7 SER 13 8 GLY 14 9 LEU 15 10 VAL 16 11 PRO 17 12 ARG 18 13 GLY 19 14 SER 20 15 HIS 21 16 MET 22 17 GLY 23 18 SER 24 19 GLY 25 20 SER 26 21 LEU 27 22 ASN 28 23 SER 29 24 SER 30 25 ALA 31 26 SER 32 27 SER 33 28 ILE 34 29 SER 35 30 ILE 36 31 ASP 37 32 VAL 38 33 LYS 39 34 PRO 40 35 THR 41 36 MET 42 37 GLN 43 38 SER 44 39 TRP 45 40 ALA 46 41 GLN 47 42 GLU 48 43 VAL 49 44 ARG 50 45 ALA 51 46 GLU 52 47 PHE 53 48 GLY 54 49 HIS 55 50 SER 56 51 ASP 57 52 GLU 58 53 ALA 59 54 SER 60 55 SER 61 56 SER 62 57 LEU 63 58 ASN 64 59 SER 65 60 SER 66 61 ALA 67 62 ALA 68 63 SER 69 64 CYS 70 65 GLY 71 66 SER 72 67 LEU 73 68 ALA 74 69 LYS 75 70 LYS 76 71 GLU 77 72 THR 78 73 ALA 79 74 ASP 80 75 GLY 81 76 ASN 82 77 LEU 83 78 GLU 84 79 SER 85 80 LYS 86 81 ASP 87 82 GLY 88 83 GLU 89 84 GLY 90 85 ARG 91 86 GLU 92 87 MET 93 88 ALA 94 89 PHE 95 90 GLU 96 91 PHE 97 92 LEU 98 93 ASP 99 94 GLY 100 95 VAL 101 96 ASN 102 97 GLU 103 98 VAL 104 99 LYS 105 100 PHE 106 101 GLU 107 102 ARG 108 103 LEU 109 104 VAL 110 105 LYS 111 106 GLU 112 107 GLU 113 108 LYS stop_ _Sequence_homology_query_date . _Sequence_homology_query_revised_last_date 2015-01-28 loop_ _Database_name _Database_accession_code _Database_entry_mol_name _Sequence_query_to_submitted_percentage _Sequence_subject_length _Sequence_identity _Sequence_positive _Sequence_homology_expectation_value GB AAF56867 "Stem-loop binding protein [Drosophila melanogaster]" 81.42 276 100.00 100.00 6.51e-56 GB AAF71752 "replication-associated histone mRNA stem loop-binding protein [Drosophila melanogaster]" 81.42 276 100.00 100.00 6.51e-56 GB AAG16723 "histone mRNA stem-loop binding protein [Drosophila melanogaster]" 81.42 276 98.91 98.91 1.04e-54 GB AAL90413 "RH47057p [Drosophila melanogaster]" 81.42 276 100.00 100.00 6.51e-56 GB AAM50696 "GM06606p [Drosophila melanogaster]" 81.42 276 100.00 100.00 6.51e-56 REF NP_477480 "Stem-loop binding protein [Drosophila melanogaster]" 81.42 276 100.00 100.00 6.51e-56 SP Q9VAN6 "RecName: Full=Histone RNA hairpin-binding protein; AltName: Full=Histone stem-loop-binding protein [Drosophila melanogaster]" 81.42 276 100.00 100.00 6.51e-56 stop_ save_ #################### # Natural source # #################### save_natural_source _Saveframe_category natural_source loop_ _Mol_label _Organism_name_common _NCBI_taxonomy_ID _Superkingdom _Kingdom _Genus _Species $dSLBP_N-term 'Fruit fly' 7227 Eukaryota Metazoa Drosophila melanogaster stop_ save_ ######################### # Experimental source # ######################### save_experimental_source _Saveframe_category experimental_source loop_ _Mol_label _Production_method _Host_organism_name_common _Genus _Species _Strain _Vector_name $dSLBP_N-term 'recombinant technology' . . . . . stop_ save_ ##################################### # Sample contents and methodology # ##################################### ######################## # Sample description # ######################## save_Sample_1 _Saveframe_category sample _Sample_type solution _Details . loop_ _Mol_label _Concentration_value _Concentration_value_units _Isotopic_labeling $dSLBP_N-term 2 mM '[U-15N; U-13C]' stop_ save_ ############################ # Computer software used # ############################ save_FELIX _Saveframe_category software _Name FELIX _Version . loop_ _Task 'data analysis' 'data processing' stop_ _Details . save_ ######################### # Experimental detail # ######################### ################################## # NMR Spectrometer definitions # ################################## save_NMR_spectrometer _Saveframe_category NMR_spectrometer _Manufacturer Varian _Model INOVA _Field_strength 600 _Details . save_ ############################# # NMR applied experiments # ############################# save_(15N,1H)_HSQC_1 _Saveframe_category NMR_applied_experiment _Experiment_name '(15N,1H) HSQC' _Sample_label $Sample_1 save_ save_HNCA_2 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _Sample_label $Sample_1 save_ save_HN(CO)CA_3 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CO)CA _Sample_label $Sample_1 save_ save_HNCO_4 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _Sample_label $Sample_1 save_ save_HNCACB_5 _Saveframe_category NMR_applied_experiment _Experiment_name HNCACB _Sample_label $Sample_1 save_ save_CC(CO)NH_TOCSY_6 _Saveframe_category NMR_applied_experiment _Experiment_name 'CC(CO)NH TOCSY' _Sample_label $Sample_1 save_ save_HCCH-TOCSY_7 _Saveframe_category NMR_applied_experiment _Experiment_name HCCH-TOCSY _Sample_label $Sample_1 save_ save_HNHA_8 _Saveframe_category NMR_applied_experiment _Experiment_name HNHA _Sample_label $Sample_1 save_ save_1H-15N_NOESY_9 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N NOESY' _Sample_label $Sample_1 save_ save_NMR_spec_expt__0_1 _Saveframe_category NMR_applied_experiment _Experiment_name '(15N,1H) HSQC' _BMRB_pulse_sequence_accession_number . _Details '5 mm z-gradient Triax probe' save_ save_NMR_spec_expt__0_2 _Saveframe_category NMR_applied_experiment _Experiment_name HNCA _BMRB_pulse_sequence_accession_number . _Details '5 mm z-gradient Triax probe' save_ save_NMR_spec_expt__0_3 _Saveframe_category NMR_applied_experiment _Experiment_name HN(CO)CA _BMRB_pulse_sequence_accession_number . _Details '5 mm z-gradient Triax probe' save_ save_NMR_spec_expt__0_4 _Saveframe_category NMR_applied_experiment _Experiment_name HNCO _BMRB_pulse_sequence_accession_number . _Details '5 mm z-gradient Triax probe' save_ save_NMR_spec_expt__0_5 _Saveframe_category NMR_applied_experiment _Experiment_name HNCACB _BMRB_pulse_sequence_accession_number . _Details '5 mm z-gradient Triax probe' save_ save_NMR_spec_expt__0_6 _Saveframe_category NMR_applied_experiment _Experiment_name 'CC(CO)NH TOCSY' _BMRB_pulse_sequence_accession_number . _Details '5 mm z-gradient Triax probe' save_ save_NMR_spec_expt__0_7 _Saveframe_category NMR_applied_experiment _Experiment_name HCCH-TOCSY _BMRB_pulse_sequence_accession_number . _Details '5 mm z-gradient Triax probe' save_ save_NMR_spec_expt__0_8 _Saveframe_category NMR_applied_experiment _Experiment_name HNHA _BMRB_pulse_sequence_accession_number . _Details '5 mm z-gradient Triax probe' save_ save_NMR_spec_expt__0_9 _Saveframe_category NMR_applied_experiment _Experiment_name '1H-15N NOESY' _BMRB_pulse_sequence_accession_number . _Details '5 mm z-gradient Triax probe' save_ ####################### # Sample conditions # ####################### save_condition_1 _Saveframe_category sample_conditions _Details . loop_ _Variable_type _Variable_value _Variable_value_error _Variable_value_units 'ionic strength' 0.050 0.01 M pH 6.0 0.1 n/a temperature 298 2 K stop_ save_ #################### # NMR parameters # #################### ############################## # Assigned chemical shifts # ############################## ################################ # Chemical shift referencing # ################################ save_chemical_shift_reference _Saveframe_category chemical_shift_reference _Details . loop_ _Mol_common_name _Atom_type _Atom_isotope_number _Atom_group _Chem_shift_units _Chem_shift_value _Reference_method _Reference_type _External_reference_sample_geometry _External_reference_location _External_reference_axis _Indirect_shift_ratio DSS C 13 'methyl protons' ppm 0.0 . indirect . . . 0.251449530 DSS H 1 'methyl protons' ppm 0.0 internal direct . . . 1.0 DSS N 15 'methyl protons' ppm 0.0 . indirect . . . 0.101329118 stop_ save_ ################################### # Assigned chemical shift lists # ################################### ################################################################### # Chemical Shift Ambiguity Index Value Definitions # # # # The values other than 1 are used for those atoms with different # # chemical shifts that cannot be assigned to stereospecific atoms # # or to specific residues or chains. # # # # Index Value Definition # # # # 1 Unique (including isolated methyl protons, # # geminal atoms, and geminal methyl # # groups with identical chemical shifts) # # (e.g. ILE HD11, HD12, HD13 protons) # # 2 Ambiguity of geminal atoms or geminal methyl # # proton groups (e.g. ASP HB2 and HB3 # # protons, LEU CD1 and CD2 carbons, or # # LEU HD11, HD12, HD13 and HD21, HD22, # # HD23 methyl protons) # # 3 Aromatic atoms on opposite sides of # # symmetrical rings (e.g. TYR HE1 and HE2 # # protons) # # 4 Intraresidue ambiguities (e.g. LYS HG and # # HD protons or TRP HZ2 and HZ3 protons) # # 5 Interresidue ambiguities (LYS 12 vs. LYS 27) # # 6 Intermolecular ambiguities (e.g. ASP 31 CA # # in monomer 1 and ASP 31 CA in monomer 2 # # of an asymmetrical homodimer, duplex # # DNA assignments, or other assignments # # that may apply to atoms in one or more # # molecule in the molecular assembly) # # 9 Ambiguous, specific ambiguity not defined # # # ################################################################### save_shift_set_1 _Saveframe_category assigned_chemical_shifts _Details . loop_ _Sample_label $Sample_1 stop_ _Sample_conditions_label $condition_1 _Chem_shift_reference_set_label $chemical_shift_reference _Mol_system_component_name 'Drosophila SLBP N-terminus' _Text_data_format . _Text_data . loop_ _Atom_shift_assign_ID _Residue_author_seq_code _Residue_seq_code _Residue_label _Atom_name _Atom_type _Chem_shift_value _Chem_shift_value_error _Chem_shift_ambiguity_code 1 . 22 GLY H H 8.41 0.02 1 2 . 22 GLY N N 109.08 0.05 1 3 . 22 GLY CA C 46.81 0.05 1 4 . 23 SER H H 8.15 0.02 1 5 . 23 SER N N 114.28 0.05 1 6 . 23 SER CA C 60 0.05 1 7 . 23 SER C C 174.11 0.05 1 8 . 23 SER CB C 65.08 0.05 1 9 . 24 GLY H H 8.48 0.02 1 10 . 24 GLY N N 109.89 0.05 1 11 . 24 GLY CA C 46.82 0.05 1 12 . 25 SER H H 8.29 0.02 1 13 . 25 SER N N 114.53 0.05 1 14 . 25 SER CA C 59.49 0.05 1 15 . 25 SER HA H 3.94 0.02 1 16 . 25 SER C C 172.25 0.05 1 17 . 25 SER CB C 65.33 0.05 1 18 . 26 LEU H H 8.27 0.02 1 19 . 26 LEU N N 122.48 0.05 1 20 . 26 LEU CA C 55.69 0.05 1 21 . 26 LEU HA H 4.33 0.02 1 22 . 26 LEU C C 172.9 0.05 1 23 . 26 LEU CB C 43.51 0.05 1 24 . 26 LEU CG C 28.28 0.05 1 25 . 26 LEU CD1 C 26.25 0.05 1 26 . 26 LEU CD2 C 24.73 0.05 1 27 . 27 ASN H H 8.34 0.02 1 28 . 27 ASN N N 119.97 0.05 1 29 . 27 ASN CA C 57.83 0.05 1 30 . 27 ASN HA H 4.16 0.02 1 31 . 27 ASN C C 173.56 0.05 1 32 . 27 ASN CB C 31.63 0.05 1 33 . 32 SER H H 8.18 0.02 1 34 . 32 SER N N 119.69 0.05 1 35 . 32 SER CA C 59.24 0.05 1 36 . 32 SER CB C 65.08 0.05 1 37 . 33 ILE H H 8.12 0.02 1 38 . 33 ILE N N 121.02 0.05 1 39 . 33 ILE CA C 62.28 0.05 1 40 . 33 ILE C C 172.03 0.05 1 41 . 33 ILE CB C 40.2 0.05 1 42 . 33 ILE CD1 C 18.88 0.05 1 43 . 33 ILE CG1 C 28.53 0.05 1 44 . 33 ILE CG2 C 24.2 0.05 1 45 . 34 SER H H 8.28 0.02 1 46 . 34 SER N N 118.61 0.05 1 47 . 34 SER CA C 59.49 0.05 1 48 . 34 SER HA H 4.46 0.02 1 49 . 34 SER C C 173.12 0.05 1 50 . 34 SER CB C 65.08 0.05 1 51 . 35 ILE H H 8.01 0.02 1 52 . 35 ILE N N 120.49 0.05 1 53 . 35 ILE CA C 62.54 0.05 1 54 . 35 ILE C C 175.2 0.05 1 55 . 35 ILE CB C 40.46 0.05 1 56 . 35 ILE CD1 C 18.88 0.05 1 57 . 35 ILE CG1 C 28.28 0.05 1 58 . 35 ILE CG2 C 24.2 0.05 1 59 . 36 ASP H H 8.3 0.02 1 60 . 36 ASP N N 122.71 0.05 1 61 . 36 ASP CA C 55.69 0.05 1 62 . 36 ASP HA H 4.58 0.02 1 63 . 36 ASP C C 173.56 0.05 1 64 . 36 ASP CB C 42.49 0.05 1 65 . 37 VAL H H 7.96 0.02 1 66 . 37 VAL N N 119.36 0.05 1 67 . 37 VAL CA C 64.32 0.05 1 68 . 37 VAL HA H 4.07 0.05 1 69 . 37 VAL C C 175.2 0.05 1 70 . 37 VAL CB C 33.35 0.05 1 71 . 37 VAL CG1 C 28.78 0.05 1 72 . 38 LYS H H 8.42 0.02 1 73 . 38 LYS N N 120.66 0.05 1 74 . 38 LYS CA C 57.65 0.05 1 75 . 38 LYS HA H 4.28 0.02 1 76 . 38 LYS C C 173.56 0.05 1 77 . 38 LYS CB C 32.15 0.05 1 78 . 39 PRO CA C 64.57 0.05 1 79 . 39 PRO CD C 46.55 0.05 1 80 . 39 PRO CG C 28.53 0.05 1 81 . 40 THR H H 8.16 0.02 1 82 . 40 THR N N 112.9 0.05 1 83 . 40 THR CA C 59.75 0.05 1 84 . 40 THR C C 173.02 0.05 1 85 . 40 THR CB C 64.82 0.05 1 86 . 41 MET H H 8.19 0.02 1 87 . 41 MET N N 124.46 0.05 1 88 . 41 MET CA C 57.21 0.05 1 89 . 41 MET C C 174.66 0.05 1 90 . 41 MET CB C 32.34 0.05 1 91 . 41 MET CG C 28.28 0.05 1 92 . 42 GLN H H 8.56 0.02 1 93 . 42 GLN N N 120.57 0.05 1 94 . 42 GLN CA C 57.21 0.05 1 95 . 42 GLN HA H 4.2 0.02 1 96 . 42 GLN C C 173.12 0.05 1 97 . 42 GLN CB C 30.56 0.05 1 98 . 42 GLN CG C 34.88 0.05 1 99 . 43 SER H H 8.23 0.02 1 100 . 43 SER N N 115.57 0.05 1 101 . 43 SER CA C 59.75 0.05 1 102 . 43 SER C C 174.98 0.05 1 103 . 43 SER CB C 64.82 0.05 1 104 . 44 TRP H H 7.98 0.02 1 105 . 44 TRP N N 121.35 0.05 1 106 . 44 TRP CA C 58.48 0.05 1 107 . 44 TRP HA H 4.67 0.02 1 108 . 44 TRP C C 173.78 0.05 1 109 . 44 TRP CB C 30.56 0.05 1 110 . 45 ALA H H 7.94 0.02 1 111 . 45 ALA N N 123.51 0.05 1 112 . 45 ALA CA C 53.91 0.05 1 113 . 45 ALA HA H 4.15 0.02 1 114 . 45 ALA C C 175.2 0.05 1 115 . 45 ALA CB C 20.66 0.05 1 116 . 46 GLN H H 8.33 0.02 1 117 . 46 GLN N N 118.65 0.05 1 118 . 46 GLN CA C 57.97 0.05 1 119 . 46 GLN HA H 4.16 0.02 1 120 . 46 GLN C C 173.12 0.05 1 121 . 46 GLN CB C 31.57 0.05 1 122 . 46 GLN CG C 37.42 0.05 1 123 . 47 GLU H H 8.14 0.02 1 124 . 47 GLU N N 120.59 0.05 1 125 . 47 GLU CA C 57.13 0.05 1 126 . 47 GLU HA H 4.02 0.02 1 127 . 47 GLU C C 171.81 0.05 1 128 . 47 GLU CB C 33.61 0.05 1 129 . 48 VAL H H 8.3 0.02 1 130 . 48 VAL N N 123.88 0.05 1 131 . 48 VAL CA C 63.3 0.05 1 132 . 48 VAL HA H 4.28 0.02 1 133 . 48 VAL C C 174.76 0.05 1 134 . 48 VAL CB C 34.12 0.05 1 135 . 48 VAL CG1 C 22.44 0.05 1 136 . 49 ARG H H 8.32 0.02 1 137 . 49 ARG N N 125.33 0.05 1 138 . 49 ARG CA C 57.21 0.05 1 139 . 49 ARG HA H 4.55 0.02 1 140 . 49 ARG C C 172.79 0.05 1 141 . 49 ARG CB C 32.08 0.05 1 142 . 49 ARG CG C 28.53 0.05 1 143 . 50 ALA H H 8.3 0.02 1 144 . 50 ALA N N 124.52 0.05 1 145 . 50 ALA CA C 54.17 0.05 1 146 . 50 ALA HA H 4.24 0.02 1 147 . 50 ALA C C 174.54 0.05 1 148 . 50 ALA CB C 20.41 0.05 1 149 . 51 GLU H H 8.13 0.02 1 150 . 51 GLU N N 121.23 0.05 1 151 . 51 GLU CA C 57.21 0.05 1 152 . 51 GLU HA H 4.2 0.02 1 153 . 51 GLU C C 174.87 0.05 1 154 . 51 GLU CB C 34.37 0.05 1 155 . 52 PHE H H 8.176 0.02 1 156 . 52 PHE N N 120.29 0.05 1 157 . 52 PHE CA C 58.88 0.05 1 158 . 52 PHE HA H 4.54 0.02 1 159 . 52 PHE C C 175.2 0.05 1 160 . 52 PHE CB C 40.89 0.05 1 161 . 53 GLY H H 8.41 0.02 1 162 . 53 GLY N N 127.94 0.05 1 163 . 53 GLY CA C 46.55 0.05 1 164 . 54 HIS H H 8.28 0.02 1 165 . 54 HIS N N 117.38 0.05 1 166 . 54 HIS CA C 54.42 0.05 1 167 . 54 HIS HA H 4.72 0.02 1 168 . 54 HIS C C 172.79 0.05 1 169 . 54 HIS CB C 40.21 0.05 1 170 . 55 SER H H 8.2 0.02 1 171 . 55 SER N N 115.01 0.05 1 172 . 55 SER CA C 59.75 0.05 1 173 . 55 SER C C 173.78 0.05 1 174 . 55 SER CB C 65.08 0.05 1 175 . 56 ASP H H 8.2 0.02 1 176 . 56 ASP N N 122.7 0.05 1 177 . 56 ASP CA C 57.46 0.05 1 178 . 56 ASP HA H 4.33 0.02 1 179 . 56 ASP C C 174 0.05 1 180 . 56 ASP CB C 43.25 0.05 1 181 . 57 GLU H H 8.42 0.02 1 182 . 57 GLU N N 121.85 0.05 1 183 . 57 GLU CA C 58.23 0.05 1 184 . 57 GLU HA H 4.28 0.02 1 185 . 57 GLU C C 174.88 0.05 1 186 . 57 GLU CB C 31.33 0.05 1 187 . 57 GLU CG C 37.42 0.05 1 188 . 58 ALA H H 8.29 0.02 1 189 . 58 ALA N N 123.19 0.05 1 190 . 58 ALA CA C 54.16 0.05 1 191 . 58 ALA HA H 4.28 0.02 1 192 . 58 ALA C C 173.56 0.05 1 193 . 58 ALA CB C 20.41 0.05 1 194 . 59 SER H H 8.16 0.02 1 195 . 59 SER N N 113.24 0.05 1 196 . 59 SER CA C 59.75 0.05 1 197 . 59 SER HA H 4.24 0.02 1 198 . 59 SER C C 173.01 0.05 1 199 . 59 SER CB C 65.08 0.05 1 200 . 60 SER H H 8.23 0.02 1 201 . 60 SER N N 116.35 0.05 1 202 . 60 SER CA C 60 0.05 1 203 . 60 SER HA H 4.37 0.02 1 204 . 60 SER C C 175.09 0.05 1 205 . 60 SER CB C 65.08 0.05 1 206 . 61 SER H H 8.33 0.02 1 207 . 61 SER N N 116.58 0.05 1 208 . 61 SER CA C 59.49 0.05 1 209 . 61 SER C C 175.53 0.05 1 210 . 61 SER CB C 65.33 0.05 1 211 . 62 LEU H H 8.52 0.02 1 212 . 62 LEU N N 121.48 0.05 1 213 . 62 LEU CA C 55.74 0.05 1 214 . 62 LEU HA H 4.59 0.02 1 215 . 62 LEU CB C 42.45 0.05 1 216 . 65 SER CA C 59.75 0.05 1 217 . 65 SER CB C 65.08 0.05 1 218 . 66 ALA H H 8.23 0.02 1 219 . 66 ALA N N 124.43 0.05 1 220 . 66 ALA CA C 53.66 0.05 1 221 . 66 ALA HA H 4.24 0.02 1 222 . 66 ALA C C 174.66 0.05 1 223 . 66 ALA CB C 20.41 0.05 1 224 . 67 ALA H H 8.16 0.02 1 225 . 67 ALA N N 119.67 0.05 1 226 . 67 ALA CA C 57.31 0.05 1 227 . 67 ALA C C 172.58 0.05 1 228 . 67 ALA CB C 20.42 0.05 1 229 . 69 CYS CA C 59.05 0.05 1 230 . 69 CYS CB C 40.88 0.05 1 231 . 70 GLY H H 8.35 0.02 1 232 . 70 GLY N N 108.88 0.05 1 233 . 70 GLY CA C 46.47 0.05 1 234 . 71 SER H H 8.17 0.02 1 235 . 71 SER N N 114.42 0.05 1 236 . 71 SER CA C 60 0.05 1 237 . 71 SER C C 172.91 0.05 1 238 . 71 SER CB C 64.82 0.05 1 239 . 72 LEU H H 8.33 0.02 1 240 . 72 LEU N N 122.17 0.05 1 241 . 72 LEU CA C 56.45 0.05 1 242 . 72 LEU HA H 4.02 0.02 1 243 . 72 LEU C C 174 0.05 1 244 . 72 LEU CB C 43.51 0.05 1 245 . 72 LEU CG C 28.28 0.05 1 246 . 72 LEU CD1 C 26.25 0.05 1 247 . 72 LEU CD2 C 24.72 0.05 1 248 . 73 ALA H H 8.09 0.02 1 249 . 73 ALA N N 123.23 0.05 1 250 . 73 ALA CA C 53.91 0.05 1 251 . 73 ALA HA H 4.24 0.02 1 252 . 73 ALA C C 172.25 0.05 1 253 . 73 ALA CB C 20.41 0.05 1 254 . 74 LYS H H 8.02 0.02 1 255 . 74 LYS N N 117.64 0.05 1 256 . 74 LYS CA C 57.97 0.05 1 257 . 74 LYS HA H 4.2 0.02 1 258 . 74 LYS C C 172.47 0.05 1 259 . 74 LYS CB C 31.07 0.05 1 260 . 74 LYS CG C 27.67 0.05 1 261 . 75 LYS H H 8.3 0.02 1 262 . 75 LYS N N 120.26 0.05 1 263 . 75 LYS CA C 57.72 0.05 1 264 . 75 LYS HA H 4.41 0.02 1 265 . 75 LYS C C 173.56 0.05 1 266 . 75 LYS CB C 34.62 0.05 1 267 . 75 LYS CG C 25.99 0.05 1 268 . 75 LYS CE C 43.51 0.05 1 269 . 76 GLU H H 8.55 0.02 1 270 . 76 GLU N N 121.39 0.05 1 271 . 76 GLU CA C 57.83 0.05 1 272 . 76 GLU HA H 4.33 0.02 1 273 . 76 GLU C C 173.56 0.05 1 274 . 76 GLU CB C 31.63 0.05 1 275 . 77 THR H H 8.13 0.02 1 276 . 77 THR N N 113.63 0.05 1 277 . 77 THR CA C 62.23 0.05 1 278 . 77 THR HA H 4.33 0.02 1 279 . 77 THR C C 175.31 0.05 1 280 . 77 THR CB C 63.05 0.05 1 281 . 78 ALA H H 8.38 0.02 1 282 . 78 ALA N N 125.15 0.05 1 283 . 78 ALA CA C 53.91 0.05 1 284 . 78 ALA HA H 4.33 0.02 1 285 . 78 ALA C C 173.12 0.05 1 286 . 78 ALA CB C 20.41 0.05 1 287 . 79 ASP H H 8.05 0.02 1 288 . 79 ASP N N 117.89 0.05 1 289 . 79 ASP CA C 58.99 0.05 1 290 . 79 ASP HA H 4.5 0.02 1 291 . 79 ASP C C 174 0.05 1 292 . 79 ASP CB C 40.72 0.05 1 293 . 80 GLY H H 8.26 0.02 1 294 . 80 GLY N N 108.97 0.05 1 295 . 80 GLY CA C 42.49 0.05 1 296 . 80 GLY HA2 H 3.85 0.02 1 297 . 81 ASN H H 8 0.02 1 298 . 81 ASN N N 120.26 0.05 1 299 . 81 ASN CA C 58.99 0.05 1 300 . 81 ASN HA H 4.2 0.02 1 301 . 81 ASN C C 175.31 0.05 1 302 . 81 ASN CB C 40.97 0.05 1 303 . 82 LEU H H 8.2 0.02 1 304 . 82 LEU N N 120.56 0.05 1 305 . 82 LEU CA C 57.46 0.05 1 306 . 82 LEU HA H 4.2 0.02 1 307 . 82 LEU C C 174.76 0.05 1 308 . 82 LEU CB C 37.42 0.05 1 309 . 82 LEU CG C 34.37 0.05 1 310 . 82 LEU CD1 C 31.83 0.05 1 311 . 82 LEU CD2 C 25.74 0.05 1 312 . 83 GLU H H 8.42 0.02 1 313 . 83 GLU N N 122.17 0.05 1 314 . 83 GLU CA C 57.97 0.05 1 315 . 83 GLU HA H 4.33 0.02 1 316 . 83 GLU CB C 37.67 0.05 1 317 . 83 GLU CG C 31.33 0.05 1 318 . 84 SER H H 8.26 0.02 1 319 . 84 SER N N 115.63 0.05 1 320 . 84 SER CA C 59.49 0.05 1 321 . 84 SER HA H 4.42 0.02 1 322 . 84 SER C C 173.78 0.05 1 323 . 84 SER CB C 65.08 0.05 1 324 . 85 LYS H H 8.39 0.02 1 325 . 85 LYS N N 122.38 0.05 1 326 . 85 LYS CA C 57.47 0.05 1 327 . 85 LYS CB C 34.37 0.05 1 328 . 85 LYS CG C 25.74 0.05 1 329 . 86 ASP H H 8.3 0.02 1 330 . 86 ASP N N 119.76 0.05 1 331 . 86 ASP CA C 55.69 0.05 1 332 . 86 ASP HA H 4.54 0.02 1 333 . 86 ASP C C 173.56 0.05 1 334 . 86 ASP CB C 42.49 0.05 1 335 . 87 GLY H H 8.3 0.02 1 336 . 87 GLY N N 108.02 0.05 1 337 . 87 GLY CA C 46.82 0.05 1 338 . 87 GLY C C 173.34 0.05 1 339 . 87 GLY HA2 H 3.94 0.02 1 340 . 88 GLU H H 8.09 0.02 1 341 . 88 GLU N N 119.2 0.05 1 342 . 88 GLU CA C 57.97 0.05 1 343 . 88 GLU C C 172.57 0.05 1 344 . 88 GLU CB C 37.67 0.05 1 345 . 88 GLU CG C 31.33 0.05 1 346 . 88 GLU HA H 4.33 0.02 1 347 . 89 GLY H H 8.5 0.02 1 348 . 89 GLY N N 108.87 0.05 1 349 . 89 GLY CA C 46.55 0.05 1 350 . 89 GLY HA2 H 3.94 0.02 1 351 . 90 ARG H H 8.19 0.02 1 352 . 90 ARG N N 117.45 0.05 1 353 . 90 ARG CA C 57.72 0.05 1 354 . 90 ARG C C 172.91 0.05 1 355 . 90 ARG CB C 37.42 0.05 1 356 . 90 ARG CG C 31.83 0.05 1 357 . 91 GLU H H 8.24 0.02 1 358 . 91 GLU N N 120.96 0.05 1 359 . 91 GLU CA C 57.97 0.05 1 360 . 91 GLU HA H 4.24 0.02 1 361 . 91 GLU C C 172.79 0.05 1 362 . 91 GLU CB C 37.41 0.05 1 363 . 92 MET H H 8.29 0.02 1 364 . 92 MET N N 121.14 0.05 1 365 . 92 MET CA C 56.45 0.05 1 366 . 92 MET HA H 4.28 0.02 1 367 . 92 MET C C 174 0.05 1 368 . 92 MET CB C 34.12 0.05 1 369 . 92 MET CG C 33.1 0.05 1 370 . 93 ALA H H 8.16 0.02 1 371 . 93 ALA N N 123.62 0.05 1 372 . 93 ALA CA C 53.91 0.05 1 373 . 93 ALA HA H 4.28 0.02 1 374 . 93 ALA C C 175.42 0.05 1 375 . 93 ALA CB C 20.41 0.05 1 376 . 94 PHE H H 8.23 0.02 1 377 . 94 PHE N N 118.15 0.05 1 378 . 94 PHE CA C 56.71 0.05 1 379 . 94 PHE HA H 4.07 0.02 1 380 . 94 PHE C C 174.87 0.05 1 381 . 94 PHE CB C 42.49 0.05 1 382 . 95 GLU H H 8.35 0.02 1 383 . 95 GLU N N 120.08 0.05 1 384 . 95 GLU CA C 57.72 0.05 1 385 . 95 GLU HA H 4.16 0.02 1 386 . 95 GLU C C 174.87 0.05 1 387 . 95 GLU CB C 37.42 0.05 1 388 . 95 GLU CG C 31.83 0.05 1 389 . 96 PHE H H 8.11 0.02 1 390 . 96 PHE N N 119.44 0.05 1 391 . 96 PHE CA C 58.74 0.05 1 392 . 96 PHE C C 171.81 0.05 1 393 . 96 PHE CB C 40.72 0.05 1 394 . 97 LEU H H 8.11 0.02 1 395 . 97 LEU N N 122.71 0.05 1 396 . 97 LEU CA C 56.19 0.05 1 397 . 97 LEU HA H 4.33 0.02 1 398 . 97 LEU C C 172.47 0.05 1 399 . 97 LEU CB C 43.76 0.05 1 400 . 97 LEU CG C 28.02 0.05 1 401 . 97 LEU CD1 C 26.25 0.05 1 402 . 97 LEU CD2 C 24.73 0.05 1 403 . 98 ASP H H 8.18 0.02 1 404 . 98 ASP N N 119.69 0.05 1 405 . 98 ASP CA C 55.69 0.05 1 406 . 98 ASP C C 173.67 0.05 1 407 . 98 ASP CB C 42.49 0.05 1 408 . 99 GLY H H 8.25 0.02 1 409 . 99 GLY N N 108.04 0.05 1 410 . 99 GLY CA C 46.81 0.05 1 411 . 99 GLY C C 173.23 0.05 1 412 . 99 GLY HA2 H 3.94 0.02 1 413 . 100 VAL H H 7.9 0.02 1 414 . 100 VAL N N 117.91 0.05 1 415 . 100 VAL CA C 64.06 0.05 1 416 . 100 VAL HA H 4.2 0.02 1 417 . 100 VAL C C 174 0.05 1 418 . 100 VAL CB C 33.86 0.05 1 419 . 100 VAL CG1 C 22.18 0.05 1 420 . 101 ASN H H 8.45 0.02 1 421 . 101 ASN N N 120.22 0.05 1 422 . 101 ASN CA C 54.67 0.05 1 423 . 101 ASN HA H 4.67 0.02 1 424 . 101 ASN C C 172.68 0.05 1 425 . 101 ASN CB C 40.46 0.05 1 426 . 102 GLU H H 8.22 0.02 1 427 . 102 GLU N N 120.15 0.05 1 428 . 102 GLU CA C 57.97 0.05 1 429 . 102 GLU HA H 4.2 0.02 1 430 . 102 GLU C C 174 0.05 1 431 . 102 GLU CB C 37.42 0.05 1 432 . 102 GLU CG C 31.58 0.05 1 433 . 103 VAL H H 8.12 0.02 1 434 . 103 VAL N N 120.79 0.05 1 435 . 103 VAL CA C 63.3 0.05 1 436 . 103 VAL HA H 4.24 0.02 1 437 . 103 VAL C C 172.14 0.05 1 438 . 103 VAL CB C 34.11 0.05 1 439 . 103 VAL CG1 C 22.18 0.05 1 440 . 104 LYS H H 8.33 0.02 1 441 . 104 LYS N N 124.48 0.05 1 442 . 104 LYS CA C 56.95 0.05 1 443 . 104 LYS HA H 4.28 0.02 1 444 . 104 LYS C C 173.78 0.05 1 445 . 104 LYS CB C 28.28 0.05 1 446 . 104 LYS CG C 24.73 0.05 1 447 . 105 PHE H H 8.28 0.02 1 448 . 105 PHE N N 117.59 0.05 1 449 . 105 PHE CA C 54.67 0.05 1 450 . 105 PHE HA H 4.67 0.02 1 451 . 105 PHE C C 173.56 0.05 1 452 . 105 PHE CB C 39.95 0.05 1 453 . 106 GLU H H 8.21 0.02 1 454 . 106 GLU N N 121.18 0.05 1 455 . 106 GLU CA C 57.21 0.05 1 456 . 106 GLU HA H 4.28 0.02 1 457 . 106 GLU C C 172.9 0.05 1 458 . 106 GLU CB C 35.13 0.05 1 459 . 106 GLU CG C 30.56 0.05 1 460 . 107 ARG H H 8.32 0.02 1 461 . 107 ARG N N 120.75 0.05 1 462 . 107 ARG CA C 57.21 0.05 1 463 . 107 ARG HA H 4.28 0.02 1 464 . 107 ARG C C 173.12 0.05 1 465 . 107 ARG CB C 32.08 0.05 1 466 . 107 ARG CG C 28.78 0.05 1 467 . 108 LEU H H 8.23 0.02 1 468 . 108 LEU N N 122.68 0.05 1 469 . 108 LEU CA C 56.19 0.05 1 470 . 108 LEU HA H 4.33 0.02 1 471 . 108 LEU C C 172.14 0.05 1 472 . 108 LEU CB C 43.76 0.05 1 473 . 108 LEU CG C 28.28 0.05 1 474 . 108 LEU CD1 C 26.25 0.05 1 475 . 108 LEU CD2 C 24.72 0.05 1 476 . 109 VAL H H 8.06 0.02 1 477 . 109 VAL N N 121.3 0.05 1 478 . 109 VAL CA C 63.81 0.05 1 479 . 109 VAL HA H 4.37 0.02 1 480 . 109 VAL C C 173.89 0.05 1 481 . 109 VAL CB C 33.61 0.05 1 482 . 109 VAL CG1 C 22.44 0.05 1 483 . 110 LYS H H 8.23 0.02 1 484 . 110 LYS N N 123.81 0.05 1 485 . 110 LYS CA C 57.72 0.05 1 486 . 110 LYS HA H 4.28 0.02 1 487 . 110 LYS C C 174.98 0.05 1 488 . 110 LYS CB C 31.57 0.05 1 489 . 111 GLU H H 8.17 0.02 1 490 . 111 GLU N N 119.33 0.05 1 491 . 111 GLU CA C 58.99 0.05 1 492 . 111 GLU HA H 4.59 0.02 1 493 . 111 GLU C C 173.56 0.05 1 494 . 111 GLU CG C 40.97 0.05 1 495 . 112 GLU H H 8.33 0.02 1 496 . 112 GLU N N 121.48 0.05 1 497 . 112 GLU CA C 57.72 0.05 1 498 . 112 GLU HA H 4.24 0.02 1 499 . 112 GLU C C 173.23 0.05 1 500 . 112 GLU CB C 37.42 0.05 1 501 . 112 GLU CG C 31.57 0.05 1 502 . 113 LYS H H 7.94 0.02 1 503 . 113 LYS N N 126.5 0.05 1 504 . 113 LYS CA C 58.88 0.05 1 505 . 113 LYS HA H 4.16 0.02 1 506 . 113 LYS C C 174.32 0.05 1 507 . 113 LYS CB C 35.12 0.05 1 stop_ save_